The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Oxonol-V     (4Z)-4-[(2E,4E)-5-(5-oxo-3- phenyl-2H-1,2...

Synonyms: oxonol V, AC1O5PLK, 75925_FLUKA, 75925_SIGMA, 61389-30-8
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Oxonol-V

 

High impact information on Oxonol-V

  • Stimulation by ATP is not caused by the generation of a membrane potential, based on responses of the indicator dye oxonol V [5].
  • Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle [6].
  • Measurements with acridine orange and oxonol V indicate that the reconstituted ATPase retains its transport activity, generating both delta pH and delta psi during the hydrolysis of MgATP [7].
  • Absorbance changes in the anionic dye bis[3-phenyl-5-oxoisoxazol-4-yl]pentamethineoxonol (oxonol V) can be used to monitor the membrane potential of liposomes and cytochrome c containing cytochrome oxidase proteoliposomes (c-loaded COV) [8].
  • Respiration on internal cytochrome c generated a membrane potential of 53 mV (positive inside) and a pH gradient of 0.2 (acid inside) as monitored by the optical probes oxonol V and pyranine, respectively [9].
 

Biological context of Oxonol-V

  • Measurements at the oxonol V fluorescence excitation wavelength indicated that only small changes in the reflectance signal occurred during seizure activity suggesting minimal blood volume change contributions to the extrinsic probe signal [2].
  • Energization resulted in an increase in the number of oxonol-V binding sites, the new binding sites having the same dissociation constant [10].
 

Anatomical context of Oxonol-V

 

Associations of Oxonol-V with other chemical compounds

 

Gene context of Oxonol-V

References

  1. Muscarinic depolarization of SH-SY5Y human neuroblastoma cells as determined using oxonol V. Kukkonen, J.P., Hautala, R., Akerman, K.E. Neurosci. Lett. (1996) [Pubmed]
  2. Seizure activity and cortical spreading depression monitored by an extrinsic potential-sensitive molecular probe. Evans, D., Smith, J.C. Brain Res. (1987) [Pubmed]
  3. Plasma membrane potential of lymphocytes from ataxia telangiectasia patients. Ozer, N.K., Bashford, C.L., Carter, N.D., Pasternak, C.A. Clin. Biochem. (1989) [Pubmed]
  4. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria. Kim, Y.J., Mizushima, S., Tokuda, H. J. Biochem. (1991) [Pubmed]
  5. ATP-dependent S-(2,4-dinitrophenyl)glutathione transport in canalicular plasma membrane vesicles from rat liver. Akerboom, T.P., Narayanaswami, V., Kunst, M., Sies, H. J. Biol. Chem. (1991) [Pubmed]
  6. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. Wieczorek, H., Putzenlechner, M., Zeiske, W., Klein, U. J. Biol. Chem. (1991) [Pubmed]
  7. Electrogenic H+ translocation by the plasma membrane ATPase of Neurospora. Studies on plasma membrane vesicles and reconstituted enzyme. Perlin, D.S., Kasamo, K., Brooker, R.J., Slayman, C.W. J. Biol. Chem. (1984) [Pubmed]
  8. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Cooper, C.E., Bruce, D., Nicholls, P. Biochemistry (1990) [Pubmed]
  9. Structure and vectorial properties of proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Cooper, C.E., Nicholls, P. Biochemistry (1990) [Pubmed]
  10. Oxonol-V as a probe of chromaffin granule membrane potentials. Scherman, D., Henry, J.P. Biochim. Biophys. Acta (1980) [Pubmed]
  11. Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes. Smith, J.C., Russ, P., Cooperman, B.S., Chance, B. Biochemistry (1976) [Pubmed]
  12. Quantitative analysis of oxonol V fluorescence in submitochondrial particles. Freedman, J.C., Novak, T.S., Penefsky, H.S., Stein, W.D. Ann. N. Y. Acad. Sci. (1992) [Pubmed]
  13. Anion inhibition of the proton pump in rat liver multivesicular bodies. Van Dyke, R.W. J. Biol. Chem. (1986) [Pubmed]
  14. Protein I, a translocatable ion channel from Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting O2- generation. Haines, K.A., Yeh, L., Blake, M.S., Cristello, P., Korchak, H., Weissmann, G. J. Biol. Chem. (1988) [Pubmed]
  15. Protein-independent lead permeation through myelin lipid liposomes. Díaz, R.S., Monreal, J. Mol. Pharmacol. (1995) [Pubmed]
  16. Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium. Michel, T.A., Macy, J.M. J. Bacteriol. (1990) [Pubmed]
  17. Inhibition by linoleic acid hydroperoxide of alveolar macrophage superoxide production: effects upon mitochondrial and plasma membrane potentials. Forman, H.J., Kim, E. Arch. Biochem. Biophys. (1989) [Pubmed]
  18. Effect of membrane potential depolarization on the organization of the actin cytoskeleton of eye epithelia. The role of adherens junctions. Chifflet, S., Correa, V., Nin, V., Justet, C., Hernández, J.A. Exp. Eye Res. (2004) [Pubmed]
 
WikiGenes - Universities