The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ligA  -  NAD-dependent DNA ligase LigA

Escherichia coli CFT073

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of lig

  • In this paper we describe two new types of phage mutants for the Mu lig function [1].
  • When DNA ligase seals this nick, the product is a highly negatively superhelical molecule that can be relaxed by E. coli topoisomerase I. This unwinding requires a high degree of homology since phi X174 single-stranded DNA does not serve as a cofactor in the unwinding of G4 DNA, even though these molecules are 70% homologous [2].
  • Limited proteolysis of the NAD+-dependent DNA ligase from Bacillus stearothermophilus with thermolysin results in two fragments which were resistant to further proteolysis [3].
  • Cloning and functional characterization of an NAD(+)-dependent DNA ligase from Staphylococcus aureus [4].
  • Plasmid containing a DNA ligase gene from Haemophilus influenzae [5].
 

High impact information on lig

  • Second, synthetic DNA corresponding to the specific binding site is catenated extensively using DNA ligase [6].
  • These data suggest that DNA ligase I is negatively regulated by its N-terminal region and that this inhibition can be relieved by post-translational modification [7].
  • Circularization achieved with DNA ligase, followed by linearization at random with DNase I, and incorporation of the linearized, repaired, blunt-ended, rearranged genes into a suitable plasmid permitted the expression of randomly permuted polypeptide chains [8].
  • The DNA ligase was purified to near-homogeneity by the two-step column chromatographic procedure from BLphLig-I cells that had been induced with isopropyl beta-D-thiogalactoside [9].
  • Role of the DNA ligase III zinc finger in polynucleotide binding and ligation [10].
 

Chemical compound and disease context of lig

 

Biological context of lig

 

Associations of lig with chemical compounds

  • The Mu ligts mutants are conditional lethals defective for both integration and replication of DNA, unable to 'complement' the bacterial lig mutation; the map between B and lys [1].
  • These results suggest that the putative zinc finger does not stimulate DNA ligase III activity on simple nicked DNA substrates, but indicate that this motif can target the binding and activity of DNA ligase III to nicked RNA homopolymer [10].
  • It is thought that bisulfite acts to inhibit excision repair, perhaps by effects on DNA polymerase I, or DNA ligase [13].
 

Analytical, diagnostic and therapeutic context of lig

References

  1. Two classes of Mu lig mutants: the thermosensitives for integration and replication and the hyperproducers for ligase. Paolozzi, L., Ghelardini, P., Liebart, J.C., Capozzoni, A., Marchelli, C. Nucleic Acids Res. (1980) [Pubmed]
  2. Unwinding associated with synapsis of DNA molecules by recA protein. Wu, A.M., Bianchi, M., DasGupta, C., Radding, C.M. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  3. Functional domains of an NAD+-dependent DNA ligase. Timson, D.J., Wigley, D.B. J. Mol. Biol. (1999) [Pubmed]
  4. Cloning and functional characterization of an NAD(+)-dependent DNA ligase from Staphylococcus aureus. Kaczmarek, F.S., Zaniewski, R.P., Gootz, T.D., Danley, D.E., Mansour, M.N., Griffor, M., Kamath, A.V., Cronan, M., Mueller, J., Sun, D., Martin, P.K., Benton, B., McDowell, L., Biek, D., Schmid, M.B. J. Bacteriol. (2001) [Pubmed]
  5. Plasmid containing a DNA ligase gene from Haemophilus influenzae. McCarthy, D., Griffin, K., Setlow, J.K. J. Bacteriol. (1984) [Pubmed]
  6. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Vinson, C.R., LaMarco, K.L., Johnson, P.F., Landschulz, W.H., McKnight, S.L. Genes Dev. (1988) [Pubmed]
  7. Activation of mammalian DNA ligase I through phosphorylation by casein kinase II. Prigent, C., Lasko, D.D., Kodama, K., Woodgett, J.R., Lindahl, T. EMBO J. (1992) [Pubmed]
  8. Random circular permutation of genes and expressed polypeptide chains: application of the method to the catalytic chains of aspartate transcarbamoylase. Graf, R., Schachman, H.K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Expression of active human DNA ligase I in Escherichia coli cells that harbor a full-length DNA ligase I cDNA construct. Teraoka, H., Minami, H., Iijima, S., Tsukada, K., Koiwai, O., Date, T. J. Biol. Chem. (1993) [Pubmed]
  10. Role of the DNA ligase III zinc finger in polynucleotide binding and ligation. Taylor, R.M., Whitehouse, J., Cappelli, E., Frosina, G., Caldecott, K.W. Nucleic Acids Res. (1998) [Pubmed]
  11. A rapid and versatile method for cloning viroids or other circular plant pathogenic RNAs. Lakshman, D.K., Tavantzis, S.M., Boucher, A., Singh, R.P. Anal. Biochem. (1992) [Pubmed]
  12. Nucleotide sequence of the lig gene and primary structure of DNA ligase of Escherichia coli. Ishino, Y., Shinagawa, H., Makino, K., Tsunasawa, S., Sakiyama, F., Nakata, A. Mol. Gen. Genet. (1986) [Pubmed]
  13. Bisulfite (sulfur dioxide) is a comutagen in E. coli and in Chinese hamster cells. Mallon, R.G., Rossman, T.G. Mutat. Res. (1981) [Pubmed]
  14. Leptospiral immunoglobulin-like proteins elicit protective immunity. Koizumi, N., Watanabe, H. Vaccine (2004) [Pubmed]
  15. Biochemical and immunological characterization of the DNA binding protein (RBP-J kappa) to mouse J kappa recombination signal sequence. Hamaguchi, Y., Yamamoto, Y., Iwanari, H., Maruyama, S., Furukawa, T., Matsunami, N., Honjo, T. J. Biochem. (1992) [Pubmed]
 
WikiGenes - Universities