The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Gamt  -  guanidinoacetate N-methyltransferase

Rattus norvegicus

Synonyms: Guanidinoacetate N-methyltransferase
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gamt

 

High impact information on Gamt

 

Chemical compound and disease context of Gamt

 

Biological context of Gamt

 

Anatomical context of Gamt

 

Associations of Gamt with chemical compounds

 

Physical interactions of Gamt

 

Regulatory relationships of Gamt

  • Although guanidinoacetate methyltransferase is irreversibly inactivated upon ultraviolet irradiation in the absence of AdoMet, the enzyme inactivated by 1-h exposure to ultraviolet irradiation has been shown to bind AdoMet with an affinity identical to that of the native enzyme [13].
 

Other interactions of Gamt

 

Analytical, diagnostic and therapeutic context of Gamt

References

  1. Molecular cloning, sequence analysis, and expression in Escherichia coli of the cDNA for guanidinoacetate methyltransferase from rat liver. Ogawa, H., Date, T., Gomi, T., Konishi, K., Pitot, H.C., Cantoni, G.L., Fujioka, M. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  2. Rat guanidinoacetate methyltransferase. Effect of site-directed alteration of an aspartic acid residue that is conserved across most mammalian S-adenosylmethionine-dependent methyltransferases. Takata, Y., Konishi, K., Gomi, T., Fujioka, M. J. Biol. Chem. (1994) [Pubmed]
  3. Nucleotide sequence of the rat guanidinoacetate methyltransferase gene. Ogawa, H., Fujioka, M. Nucleic Acids Res. (1988) [Pubmed]
  4. Crystal structure of guanidinoacetate methyltransferase from rat liver: a model structure of protein arginine methyltransferase. Komoto, J., Huang, Y., Takata, Y., Yamada, T., Konishi, K., Ogawa, H., Gomi, T., Fujioka, M., Takusagawa, F. J. Mol. Biol. (2002) [Pubmed]
  5. Recombinant rat liver guanidinoacetate methyltransferase: reactivity and function of sulfhydryl groups. Fujioka, M., Konishi, K., Takata, Y. Biochemistry (1988) [Pubmed]
  6. Myocellular creatine and creatine transporter serine phosphorylation after starvation. Zhao, C.R., Shang, L., Wang, W., Jacobs, D.O. J. Surg. Res. (2002) [Pubmed]
  7. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. Braissant, O., Henry, H., Villard, A.M., Speer, O., Wallimann, T., Bachmann, C. BMC Dev. Biol. (2005) [Pubmed]
  8. Catalytic mechanism of guanidinoacetate methyltransferase: crystal structures of guanidinoacetate methyltransferase ternary complexes. Komoto, J., Yamada, T., Takata, Y., Konishi, K., Ogawa, H., Gomi, T., Fujioka, M., Takusagawa, F. Biochemistry (2004) [Pubmed]
  9. Reversible inactivation of recombinant rat liver guanidinoacetate methyltransferase by glutathione disulfide. Konishi, K., Fujioka, M. Arch. Biochem. Biophys. (1991) [Pubmed]
  10. Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Braissant, O., Henry, H., Loup, M., Eilers, B., Bachmann, C. Brain Res. Mol. Brain Res. (2001) [Pubmed]
  11. Creatine synthesis and transport systems in the male rat reproductive tract. Lee, H., Kim, J.H., Chae, Y.J., Ogawa, H., Lee, M.H., Gerton, G.L. Biol. Reprod. (1998) [Pubmed]
  12. Recombinant rat guanidinoacetate methyltransferase: structure and function of the NH2-terminal region as deduced by limited proteolysis. Fujioka, M., Takata, Y., Gomi, T. Arch. Biochem. Biophys. (1991) [Pubmed]
  13. Identification of a tyrosine residue in rat guanidinoacetate methyltransferase that is photolabeled with S-adenosyl-L-methionine. Takata, Y., Fujioka, M. Biochemistry (1992) [Pubmed]
  14. Inhibition of Na+, K+-ATPase activity in rat striatum by guanidinoacetate. Zugno, A.I., Stefanello, F.M., Streck, E.L., Calcagnotto, T., Wannmacher, C.M., Wajner, M., Wyse, A.T. Int. J. Dev. Neurosci. (2003) [Pubmed]
  15. Probing the S-adenosylmethionine-binding site of rat guanidinoacetate methyltransferase. Effect of site-directed mutagenesis of residues that are conserved across mammalian non-nucleic acid methyltransferases. Hamahata, A., Takata, Y., Gomi, T., Fujioka, M. Biochem. J. (1996) [Pubmed]
  16. Crystallization and preliminary x-ray diffraction studies of guanidinoacetate methyltransferase from rat liver. Komoto, J., Huang, Y., Hu, Y., Takata, Y., Konishi, K., Ogawa, H., Gomi, T., Fujioka, M., Takusagawa, F. Acta Crystallogr. D Biol. Crystallogr. (1999) [Pubmed]
 
WikiGenes - Universities