The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Itpr1  -  inositol 1,4,5-trisphosphate receptor, type 1

Rattus norvegicus

Synonyms: I145TR, IP-3-R, IP3 receptor isoform 1, IP3R 1, IP3R1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Itpr1

  • Ca2+ responses to hypoxia are mediated by IP3-R on Ca2+ store depletion [1].
 

Psychiatry related information on Itpr1

 

High impact information on Itpr1

 

Biological context of Itpr1

  • Functional consequences of phosphomimetic mutations at key cAMP-dependent protein kinase phosphorylation sites in the type 1 inositol 1,4,5-trisphosphate receptor [7].
  • To address these issues, we examined the possibility whether inositol 1,4,5-trisphosphate receptor (IP3-R), which regulate intracellular Ca2+, was involved in the circadian rhythm component of the rat SCN [8].
  • In a yeast two-hybrid screen of rat brain cDNA library with the InsP3R1-specific bait, we isolated the protein phosphatase 1alpha (PP1alpha) [9].
  • While the downregulation of InsP3R1 by accelerated protein degradation has been reported, our results indicate that the downregulation of InsP3R1 occurs at the mRNA level [3].
 

Anatomical context of Itpr1

 

Associations of Itpr1 with chemical compounds

 

Regulatory relationships of Itpr1

  • By correlating Ca2+ signals and immunostaining, we revealed that oscillating vascular cells expressed both InsP3R1 and InsP3R2 whereas nonoscillating vascular cells expressed only InsP3R1 [21].
 

Other interactions of Itpr1

 

Analytical, diagnostic and therapeutic context of Itpr1

References

  1. Ca2+ responses to hypoxia are mediated by IP3-R on Ca2+ store depletion. Lahiri, S., Roy, A., Li, J., Mokashi, A., Baby, S.M. Adv. Exp. Med. Biol. (2003) [Pubmed]
  2. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. Schlecker, C., Boehmerle, W., Jeromin, A., DeGray, B., Varshney, A., Sharma, Y., Szigeti-Buck, K., Ehrlich, B.E. J. Clin. Invest. (2006) [Pubmed]
  3. Electroconvulsive shock reduces inositol trisphosphate receptor1 mRNA in rat brain. Kim, H., Rhyu, I.J., Kim, C.M., Suh, Y.S., Park, J.B., Kang, U.G., Kim, Y.S. Mol. Cells (2001) [Pubmed]
  4. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Tang, T.S., Tu, H., Chan, E.Y., Maximov, A., Wang, Z., Wellington, C.L., Hayden, M.R., Bezprozvanny, I. Neuron (2003) [Pubmed]
  5. Structure of a novel InsP3 receptor. Südhof, T.C., Newton, C.L., Archer, B.T., Ushkaryov, Y.A., Mignery, G.A. EMBO J. (1991) [Pubmed]
  6. Expression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat. Dent, M.A., Raisman, G., Lai, F.A. Development (1996) [Pubmed]
  7. Functional consequences of phosphomimetic mutations at key cAMP-dependent protein kinase phosphorylation sites in the type 1 inositol 1,4,5-trisphosphate receptor. Wagner, L.E., Li, W.H., Joseph, S.K., Yule, D.I. J. Biol. Chem. (2004) [Pubmed]
  8. The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Hamada, T., Liou, S.Y., Fukushima, T., Maruyama, T., Watanabe, S., Mikoshiba, K., Ishida, N. Neurosci. Lett. (1999) [Pubmed]
  9. Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. Tang, T.S., Tu, H., Wang, Z., Bezprozvanny, I. J. Neurosci. (2003) [Pubmed]
  10. Microtubule-dependent redistribution of the type-1 inositol 1,4,5-trisphosphate receptor in A7r5 smooth muscle cells. Vermassen, E., Van Acker, K., Annaert, W.G., Himpens, B., Callewaert, G., Missiaen, L., De Smedt, H., Parys, J.B. J. Cell. Sci. (2003) [Pubmed]
  11. The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport. Villa, A., Sharp, A.H., Racchetti, G., Podini, P., Bole, D.G., Dunn, W.A., Pozzan, T., Snyder, S.H., Meldolesi, J. Neuroscience (1992) [Pubmed]
  12. Inositol 1,4,5-trisphosphate receptor in skeletal muscle: differential expression in myofibres. Moschella, M.C., Watras, J., Jayaraman, T., Marks, A.R. J. Muscle Res. Cell. Motil. (1995) [Pubmed]
  13. Changes in mRNA levels for group I metabotropic glutamate receptors following in utero hypoxia-ischemia. Simonyi, A., Zhang, J.P., Sun, G.Y. Brain Res. Dev. Brain Res. (1999) [Pubmed]
  14. Comparative effects of age and chronic low-level lead exposure on calcium mobilization from intracellular calcium stores in brain samples obtained from the neonatal and the adult rats. Singh, A.K., Jiang, Y. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol. (1997) [Pubmed]
  15. Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. Missiaen, L., Parys, J.B., Sienaert, I., Maes, K., Kunzelmann, K., Takahashi, M., Tanzawa, K., De Smedt, H. J. Biol. Chem. (1998) [Pubmed]
  16. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Bultynck, G., Szlufcik, K., Kasri, N.N., Assefa, Z., Callewaert, G., Missiaen, L., Parys, J.B., De Smedt, H. Biochem. J. (2004) [Pubmed]
  17. 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. Sergeev, I.N., Rhoten, W.B. Endocrinology (1995) [Pubmed]
  18. Nitric oxide selectively inhibits intracellular Ca++ release elicited by inositol trisphosphate but not caffeine in rat vascular smooth muscle. Ji, J., Benishin, C.G., Pang, P.K. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  19. Characterization of the mechanism of action of tachykinins in rat striatal cholinergic interneurons. Bell, M.I., Richardson, P.J., Lee, K. Neuroscience (1998) [Pubmed]
  20. ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs. Betzenhauser, M.J., Wagner, L.E., Park, H.S., Yule, D.I. J. Biol. Chem. (2009) [Pubmed]
  21. Crucial role of type 2 inositol 1,4,5-trisphosphate receptors for acetylcholine-induced Ca2+ oscillations in vascular myocytes. Morel, J.L., Fritz, N., Lavie, J.L., Mironneau, J. Arterioscler. Thromb. Vasc. Biol. (2003) [Pubmed]
  22. Inositol 1,4,5-triphosphate receptor-sensitive Ca(2+) release, store-operated Ca(2+) entry, and cAMP responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. Inglefield, J.R., Mundy, W.R., Shafer, T.J. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
 
WikiGenes - Universities