The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SULTR1;2  -  sulfate transporter 1;2

Arabidopsis thaliana

Synonyms: F28K19.22, F28K19_22, SEL1, SELENATE RESISTANT 1, SULFATE TRANSPORTER
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on SULTR1;2

  • In this study, we demonstrated that the vacuolar SULTR4-type sulfate transporter facilitates the efflux of sulfate from the vacuoles and plays critical roles in optimizing the internal distribution of sulfate in Arabidopsis thaliana [1].
  • In this work we generated a Saccharomyces cerevisiae expression library of the A. thaliana Sultr1;2 gene with random mutations in the linking region-STAS domain and identified STAS domain lesions that altered Sultr1;2 biogenesis and/or function [2].
  • The C-terminal region of sulfate transporters from plants and animals belonging to the SLC26 family members shares a weak but significant similarity with the Bacillus sp. anti-anti-sigma protein SpoIIAA, thus defining the STAS domain (sulfate transporter and anti-sigma antagonist) [3].
  • The A. thaliana Sultr1;2 and Sultr1;1 sulfate transporters rescue the methionine-dependent growth phenotype of the yeast sulfate transporter mutant strain CP154-7B [4].
  • Constructs of Sultr1;2 in which the STAS domain was deleted (DeltaSTAS) resulted in synthesis of a truncated polypeptide that was unable to rescue the CP154-7B phenotype [4].
 

Biological context of SULTR1;2

 

Associations of SULTR1;2 with chemical compounds

  • Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2 [5].
  • This mutant, sel1-10, is allelic with the sel1 mutants identified previously in a screen for increased tolerance to selenate, a toxic analog of sulfate (Shibagaki et al., 2002) [7].
 

Other interactions of SULTR1;2

  • Macroarray analysis revealed a number of genes, including APR2 and Sultr1;2, whose mRNA accumulation was increased by sulfur deficiency [8].

References

  1. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Kataoka, T., Watanabe-Takahashi, A., Hayashi, N., Ohnishi, M., Mimura, T., Buchner, P., Hawkesford, M.J., Yamaya, T., Takahashi, H. Plant Cell (2004) [Pubmed]
  2. The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. Shibagaki, N., Grossman, A.R. J. Biol. Chem. (2006) [Pubmed]
  3. Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. Rouached, H., Berthomieu, P., El Kassis, E., Cathala, N., Catherinot, V., Labesse, G., Davidian, J.C., Fourcroy, P. J. Biol. Chem. (2005) [Pubmed]
  4. Probing the function of STAS domains of the Arabidopsis sulfate transporters. Shibagaki, N., Grossman, A.R. J. Biol. Chem. (2004) [Pubmed]
  5. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T., Takahashi, H. Plant J. (2004) [Pubmed]
  6. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Shibagaki, N., Rose, A., McDermott, J.P., Fujiwara, T., Hayashi, H., Yoneyama, T., Davies, J.P. Plant J. (2002) [Pubmed]
  7. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Maruyama-Nakashita, A., Inoue, E., Watanabe-Takahashi, A., Yamaya, T., Takahashi, H. Plant Physiol. (2003) [Pubmed]
  8. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition. Hirai, M.Y., Fujiwara, T., Awazuhara, M., Kimura, T., Noji, M., Saito, K. Plant J. (2003) [Pubmed]
 
WikiGenes - Universities