The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

MET17  -  bifunctional cysteine synthase/O...

Saccharomyces cerevisiae S288c

Synonyms: L8003.1, MET15, MET25, Protein MET17, YLR303W
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MET17

 

High impact information on MET17

  • MET15 and LEU2 were also partially silenced, indicating that rDNA silencing may be quite general [5].
  • MET25 was also found to be activated by GCN4, albeit weakly [6].
  • We test this hypothesis and show that the regions surrounding the CDEI motifs in the MET25 and MET16 promoters are maintained in a nucleosome-free state and that this requires the entire CPF1 protein [7].
  • An intact CDEI motif but not CPF1 is required for transcriptional activation from a region of the MET25 upstream activation sequence [7].
  • The use of LexA-MET4 fusion proteins also reveals that the leucine zipper of MET4 is required for the recognition of the MET25 promoter [8].
 

Chemical compound and disease context of MET17

  • The Saccharomyces cerevisiae MET17/MET25 gene encoding O-acetyl-L-serine (OAS).O-acetyl-L-homoserine (OAH) sulfhydrylase (EC 4.2.99.10) was overexpressed in Escherichia coli and the gene product was purified to homogeneity, using three steps, with a recovery of 28% from the total cell extract [1].
 

Biological context of MET17

 

Anatomical context of MET17

  • In this study, we generated transgenic tobacco plants expressing the yeast MET25 gene under the control of a constitutive promoter and targeted the yeast protein to the cytosol or to the chloroplasts [12].
 

Associations of MET17 with chemical compounds

 

Regulatory relationships of MET17

  • The counter-selectable markers consist of the PKA3 gene under control of the conditional MET25 or CHA1 promoters [15].
 

Other interactions of MET17

  • To compare its activity with GAL1 promoter and the data reported by Mumburg about MET25 promoter, the MET3 promoter was a weak but tightly controlled promoter [16].
  • This result and the recent finding that CDEI sites in the MET25 promoter are required to activate transcription (D. Thomas, H. Cherest, and Y. Surdin-Kerjan, J. Mol. Biol. 9:3292-3298, 1989) suggest that CP1 is both a kinetochore protein and a transcription factor [17].
  • This sequence is found in the centromere DNA element I (CDEI) of yeast centromeres and upstream from a number of transcription units including MET25, GAL2 and TRP1 [18].
  • 21 groups were defined named MET1 to MET25 [19].
  • We also report the construction of new members of the pRS400 series of vectors, containing the kanMX, ADE2 and MET15 genes [20].
 

Analytical, diagnostic and therapeutic context of MET17

References

  1. Overexpression of the Saccharomyces cerevisiae MET17/MET25 gene in Escherichia coli and comparative characterization of the product with O-acetylserine.O-acetylhomoserine sulfhydrylase of the yeast. Yamagata, S., Isaji, M., Nakamura, K., Fujisaki, S., Doi, K., Bawden, S., D'Andrea, R. Appl. Microbiol. Biotechnol. (1994) [Pubmed]
  2. Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Ono, B., Ishii, N., Fujino, S., Aoyama, I. Appl. Environ. Microbiol. (1991) [Pubmed]
  3. The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae. Jacquemin-Faure, I., Thomas, D., Laporte, J., Cibert, C., Surdin-Kerjan, Y. Mol. Gen. Genet. (1994) [Pubmed]
  4. Cloning of the O-acetylhomoserine sulfhydrylase gene from the ruminal bacterium Selenomonas ruminantium HD4. Qin, X., Martin, S.A. Curr. Microbiol. (2004) [Pubmed]
  5. An unusual form of transcriptional silencing in yeast ribosomal DNA. Smith, J.S., Boeke, J.D. Genes Dev. (1997) [Pubmed]
  6. Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription. O'Connell, K.F., Surdin-Kerjan, Y., Baker, R.E. Mol. Cell. Biol. (1995) [Pubmed]
  7. Chromatin structure modulation in Saccharomyces cerevisiae by centromere and promoter factor 1. Kent, N.A., Tsang, J.S., Crowther, D.J., Mellor, J. Mol. Cell. Biol. (1994) [Pubmed]
  8. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Thomas, D., Jacquemin, I., Surdin-Kerjan, Y. Mol. Cell. Biol. (1992) [Pubmed]
  9. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Spiropoulos, A., Bisson, L.F. Appl. Environ. Microbiol. (2000) [Pubmed]
  10. Transcription, nucleosome positioning and protein binding modulate nucleotide excision repair of the Saccharomyces cerevisiae MET17 promoter. Powell, N.G., Ferreiro, J., Karabetsou, N., Mellor, J., Waters, R. DNA Repair (Amst.) (2003) [Pubmed]
  11. Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Thomas, D., Cherest, H., Surdin-Kerjan, Y. Mol. Cell. Biol. (1989) [Pubmed]
  12. Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress. Matityahu, I., Kachan, L., Bar Ilan, I., Amir, R. Amino Acids (2006) [Pubmed]
  13. Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Momose, Y., Iwahashi, H. Environ. Toxicol. Chem. (2001) [Pubmed]
  14. Analysis of the methionine biosynthetic pathway in the extremely thermophilic eubacterium Thermus thermophilus. Kosuge, T., Gao, D., Hoshino, T. J. Biosci. Bioeng. (2000) [Pubmed]
  15. The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection. Olesen, K., Franke Johannesen, P., Hoffmann, L., Bech Sorensen, S., Gjermansen, C., Hansen, J. Yeast (2000) [Pubmed]
  16. MET3 promoter: a tightly regulated promoter and its application in construction of conditional lethal strain. Mao, X., Hu, Y., Liang, C., Lu, C. Curr. Microbiol. (2002) [Pubmed]
  17. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Baker, R.E., Masison, D.C. Mol. Cell. Biol. (1990) [Pubmed]
  18. DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Mellor, J., Rathjen, J., Jiang, W., Barnes, C.A., Dowell, S.J. Nucleic Acids Res. (1991) [Pubmed]
  19. Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Masselot, M., De Robichon-Szulmajster, H. Mol. Gen. Genet. (1975) [Pubmed]
  20. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., Boeke, J.D. Yeast (1998) [Pubmed]
  21. MET15 as a visual selection marker for Candida albicans. Viaene, J., Tiels, P., Logghe, M., Dewaele, S., Martinet, W., Contreras, R. Yeast (2000) [Pubmed]
  22. Molecular genetics of met 17 and met 25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene. D'Andrea, R., Surdin-Kerjan, Y., Pure, G., Cherest, H. Mol. Gen. Genet. (1987) [Pubmed]
 
WikiGenes - Universities