The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

PA3866  -  pyocin protein

Pseudomonas aeruginosa PAO1

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PA3866

 

High impact information on PA3866

  • Comparisons of the predicted amino acid sequence of the two components of pyocin S3 to those of pyocins S1, S2, and AP41 indicate that pyocin S3 is a new type of S-type pyocin [2].
  • Our results indicate that: (i) the SOS responses resulting from treatments with these two antibiotics cause only partially overlapping transcription profiles; (ii) PBP3 and DNA-gyrase inhibition produce opposite effects on transcription of pyocin genes [4].
  • The gene organization of the R2 and F2 pyocin gene cluster, however, suggested that both pyocins are not simple defective phages, but are phage tails that have been evolutionarily specialized as bacteriocins [5].
  • In the present study, the nucleotide sequence of R2 pyocin genes, along with those for F2 pyocin, which are located downstream of the R2 gene cluster on the chromosome of P. aeruginosa PAO1, was analysed in order to elucidate the relationship between the pyocins and bacteriophages [5].
  • Pyocin gene expression was confirmed with lux reporter mutants and real-time PCR studies; pyocin-like particles were also present in transmission electron micrographs of supernatants from cells treated with 1x MIC of ciprofloxacin [6].
 

Chemical compound and disease context of PA3866

 

Biological context of PA3866

 

Anatomical context of PA3866

 

Associations of PA3866 with chemical compounds

 

Regulatory relationships of PA3866

  • The prtN gene activates the expression of various pyocin genes, probably by the interaction of its product with the DNA sequences conserved in the 5' noncoding regions of the pyocin genes [21].
 

Other interactions of PA3866

  • Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes [21].
  • The induced production of resident pyocins caused by pyocin AP41 depended on a recA gene function [22].
  • When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity [23].
  • The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor [23].
  • Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes [24].
 

Analytical, diagnostic and therapeutic context of PA3866

  • We characterised isolates by pyocin typing and pulsed-field gel electrophoresis [25].
  • Complementation tests with pyocin R2-deficient mutants of PAO and ts mutants of PS17 revealed that various phenotypic interactions occur between the pyocin and bacteriophage in PAO cells lysogenized or infected with PS17 [26].
  • The overall typability for each of the three techniques was 88%-90%; however, the largest numbers of typable patterns were found when all three typing methods or pyocin and either immunotyping or serotyping were used [27].
  • Asymmetric PCR, complementary oligonucleotide hybridization, and electron microscopy indicated that pyocin C particles contained closed circular single-stranded DNA, approximately 4.0 kb in length [11].
  • There was no statistical difference in the serotypes or pyocin types detected on admission or acquired during hospitalization [28].

References

  1. Bacterial proteinaceous products (bacteriocins) as cytotoxic agents of neoplasia. Farkas-Himsley, H., Cheung, R. Cancer Res. (1976) [Pubmed]
  2. Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. Duport, C., Baysse, C., Michel-Briand, Y. J. Biol. Chem. (1995) [Pubmed]
  3. The structural basis for pyocin resistance in Neisseria gonorrhoeae lipooligosaccharides. John, C.M., Griffiss, J.M., Apicella, M.A., Mandrell, R.E., Gibson, B.W. J. Biol. Chem. (1991) [Pubmed]
  4. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Blázquez, J., Gómez-Gómez, J.M., Oliver, A., Juan, C., Kapur, V., Martín, S. Mol. Microbiol. (2006) [Pubmed]
  5. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, S., Ohnishi, M., Murata, T., Mori, H., Hayashi, T. Mol. Microbiol. (2000) [Pubmed]
  6. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Brazas, M.D., Hancock, R.E. Antimicrob. Agents Chemother. (2005) [Pubmed]
  7. Pyocin-resistant lipopolysaccharide mutans of Neisseria gonorrhoeae: alterations in sensitivity to normal human serum and polymyxin B. Guymon, L.F., Esser, M., Shafer, W.M. Infect. Immun. (1982) [Pubmed]
  8. Pseudomonas aeruginosa: evidence for the involvement of lipopolysaccharide in determining outer membrane permeability to carbenicillin and gentamicin. Shearer, B.G., Legakis, N.J. J. Infect. Dis. (1985) [Pubmed]
  9. Susceptibility of Pseudomonas aeruginosa of various pyocin types to the newly synthesized ampicillin derivative, N-(6,7-difluoroquinolonyl)ampicillin. Chen, C.H., Tsou, T.L., Chiang, H.Y., Lee, S.H., Lee, F., Lee, J.H., Wang, T.M., Liu, Y.T. J. Antimicrob. Chemother. (1997) [Pubmed]
  10. Dansyl chloride labeling of Pseudomonas aeruginosa treated with pyocin R1: change in permeability of the cell envelope. Uratani, Y. J. Bacteriol. (1982) [Pubmed]
  11. The R-type pyocin of Pseudomonas aeruginosa C is a bacteriophage tail-like particle that contains single-stranded DNA. Lee, F.K., Dudas, K.C., Hanson, J.A., Nelson, M.B., LoVerde, P.T., Apicella, M.A. Infect. Immun. (1999) [Pubmed]
  12. Use of phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic fibrosis airway infections. Beckmann, C., Brittnacher, M., Ernst, R., Mayer-Hamblett, N., Miller, S.I., Burns, J.L. Infect. Immun. (2005) [Pubmed]
  13. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. Römling, U., Fiedler, B., Bosshammer, J., Grothues, D., Greipel, J., von der Hardt, H., Tümmler, B. J. Infect. Dis. (1994) [Pubmed]
  14. Inhibition of active transport and macromolecular synthesis by pyocin 103 in Neisseria gonorrhoeae. Stein, D.C., Clark, V.L., Young, F.E. Sexually transmitted diseases. (1983) [Pubmed]
  15. Pyocin inhibition of Neisseria gonorrhoeae: mechanism of action. Morse, S.A., Jones, B.V., Lysko, P.G. Antimicrob. Agents Chemother. (1980) [Pubmed]
  16. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. Uratani, Y., Hoshino, T. J. Bacteriol. (1984) [Pubmed]
  17. Colonization of intensive care unit patients by Pseudomonas aeruginosa. Ismaeel, N.A. J. Hosp. Infect. (1993) [Pubmed]
  18. Pyocin sensitivity of Neisseria gonorrhoeae and its feasibility as an epidemiological tool. Sidberry, H.D., Sadoff, J.C. Infect. Immun. (1977) [Pubmed]
  19. Novel resistance to imipenem associated with an altered PBP-4 in a Pseudomonas aeruginosa clinical isolate. Bellido, F., Veuthey, C., Blaser, J., Bauernfeind, A., Pechère, J.C. J. Antimicrob. Chemother. (1990) [Pubmed]
  20. Interaction with lectins and differential wheat germ agglutinin binding of pyocin 103-sensitive and -resistant Neisseria gonorrhoeae. Connelly, M.C., Stein, D.C., Young, F.E., Morse, S.A., Allen, P.Z. J. Bacteriol. (1981) [Pubmed]
  21. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. Matsui, H., Sano, Y., Ishihara, H., Shinomiya, T. J. Bacteriol. (1993) [Pubmed]
  22. Purification and properties of an S-type pyocin, pyocin AP41. Sano, Y., Kageyama, M. J. Bacteriol. (1981) [Pubmed]
  23. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. de Chial, M., Ghysels, B., Beatson, S.A., Geoffroy, V., Meyer, J.M., Pattery, T., Baysse, C., Chablain, P., Parsons, Y.N., Winstanley, C., Cordwell, S.J., Cornelis, P. Microbiology (Reading, Engl.) (2003) [Pubmed]
  24. Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes. Shinomiya, T., Shiga, S., Kageyama, M. Mol. Gen. Genet. (1983) [Pubmed]
  25. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Jones, A.M., Govan, J.R., Doherty, C.J., Dodd, M.E., Isalska, B.J., Stanbridge, T.N., Webb, A.K. Lancet (2001) [Pubmed]
  26. Phenotypic mixing of pyocin R2 and bacteriophage PS17 in Pseudomonas aeruginosa PAO. Shinomiya, T. J. Virol. (1984) [Pubmed]
  27. Bacteremia due to Pseudomonas aeruginosa: use of a combined typing system in an eight-year study. Conroy, J.V., Baltch, A.L., Smith, R.P., Hammer, M.C., Griffin, P.E. J. Infect. Dis. (1983) [Pubmed]
  28. Oropharyngeal and fecal carriage of Pseudomonas aeruginosa in hospital patients. Murthy, S.K., Baltch, A.L., Smith, R.P., Desjardin, E.K., Hammer, M.C., Conroy, J.V., Michelsen, P.B. J. Clin. Microbiol. (1989) [Pubmed]
 
WikiGenes - Universities