The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Renal Plasma Flow, Effective

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Renal Plasma Flow, Effective

  • The response to indomethacin was variable (fall in ERPF (+)7.8% to (-)67%), but was greatest in patients with ascites [1].
  • Baseline filtration rate (GFR) and effective renal plasma flow (ERPF) were significantly lower in patients with cirrhosis than in controls (GFR: mean 88 +/- SD 16 mL/min vs. 106 +/- 15 mL/min, P = .01, ERPF: 477 +/- 93 vs. 561 +/- 72 mL/min, P = .002) [2].
  • During hyperglycemia, the changes induced by ramipril were accentuated in the II genotype group and attenuated dose dependently in the D allele group (treatment-genotype interaction P values for ERPF, 0.018; MAP, 0.018; and total renal resistances, 0.055) [3].
  • At baseline, PA and EH patients were similar with respect to demographic data, duration and level of hypertension, and GFR and ERPF [4].
  • Study parameters included BP, 24-h proteinuria, GFR, and effective renal plasma flow (ERPF) as determined by inulin and para-aminohippurate clearance [5].

High impact information on Renal Plasma Flow, Effective


Chemical compound and disease context of Renal Plasma Flow, Effective


Biological context of Renal Plasma Flow, Effective


Anatomical context of Renal Plasma Flow, Effective


Associations of Renal Plasma Flow, Effective with chemical compounds

  • The nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester completely abrogated the increase in ERPF and GFR elicited by chronic administration of purified porcine RLX [6].
  • Eighty percent of ascitic patients had a greater than 15% fall in ERPF after administration of indomethacin compared with 20% of nonascitic patients (P less than 0.025) [1].
  • An infusion of prostaglandin A1 in 13 patients corrected the decrease in ERPF and creatinine clearance that had followed the administration of indomethacin [1].
  • No effect of octreotide was observed on GFR, ERPF, or filtration fraction (GFR/ERPF) [20].
  • In healthy volunteers, sham smoking caused a minor but significant increase of mean arterial pressure (MAP) and GFR with no significant change of effective renal plasma flow, filtration fraction (FF), or renovascular resistance [21].

Gene context of Renal Plasma Flow, Effective


Analytical, diagnostic and therapeutic context of Renal Plasma Flow, Effective

  • Adrenalectomy was followed by a decrease in arterial BP (by 28 +/- 3/13 +/- 2 mmHg), urinary excretion of albumin and beta2 microglobulin (by 48 +/- 19 and 0.53 +/- 0.21 mg/24 h, respectively), and GFR and ERPF (by 15 +/- 3 and 54 +/- 15 ml/min per 1.73 m(2), respectively) [4].
  • Individual kidney and total ERPF were determined from gamma camera (GC) methods using renal uptake 1-2 min after injection [26].
  • After adjustment for ERPF, GFR was significantly higher in diabetics, suggesting a role of increased glomerular capillary pressure and ultrafiltration coefficient in the subset of "hyperfiltering" patients [27].
  • Orchiectomy attenuated the fall in GFR and ERPF, while numerically limiting changes in eNOS and VEGF [25].
  • Thus, in relation to body surface area, the GFR, 68 +/- 11 ml/min/1.73 m2, and ERPF, 348 +/- 65 ml/min/1.73 m2, of the donors did not differ from those of the recipients, 68 +/- 20 and 375 +/- 90 ml/min/1.73 m2, respectively [28].


  1. Effect of indomethacin and prostaglandin A1 on renal function and plasma renin activity in alcoholic liver disease. Boyer, T.D., Zia, P., Reynolds, T.B. Gastroenterology (1979) [Pubmed]
  2. Renal functional reserve and nitric oxide in patients with compensated liver cirrhosis. Woitas, R.P., Heller, J., Stoffel-Wagner, B., Spengler, U., Sauerbruch, T. Hepatology (1997) [Pubmed]
  3. Modulation of the renal response to ACE inhibition by ACE insertion/deletion polymorphism during hyperglycemia in normotensive, normoalbuminuric type 1 diabetic patients. Weekers, L., Bouhanick, B., Hadjadj, S., Gallois, Y., Roussel, R., Pean, F., Ankotche, A., Chatellier, G., Alhenc-Gelas, F., Lefebvre, P.J., Marre, M. Diabetes (2005) [Pubmed]
  4. Relative glomerular hyperfiltration in primary aldosteronism. Ribstein, J., Du Cailar, G., Fesler, P., Mimran, A. J. Am. Soc. Nephrol. (2005) [Pubmed]
  5. Effects of the angiotensin II antagonist valsartan on blood pressure, proteinuria, and renal hemodynamics in patients with chronic renal failure and hypertension. Plum, J., Bünten, B., Németh, R., Grabensee, B. J. Am. Soc. Nephrol. (1998) [Pubmed]
  6. Relaxin is a potent renal vasodilator in conscious rats. Danielson, L.A., Sherwood, O.D., Conrad, K.P. J. Clin. Invest. (1999) [Pubmed]
  7. Acute blockade of nitric oxide synthase inhibits renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. Danielson, L.A., Conrad, K.P. J. Clin. Invest. (1995) [Pubmed]
  8. On the mechanism by which chloride corrects metabolic alkalosis in man. Rosen, R.A., Julian, B.A., Dubovsky, E.V., Galla, J.H., Luke, R.G. Am. J. Med. (1988) [Pubmed]
  9. The effects of ibopamine on glomerular filtration rate and plasma norepinephrine remain preserved during prolonged treatment in patients with congestive heart failure. Lieverse, A.G., Girbes, A.R., Van Veldhuisen, D.J., Smit, A.J., Zijlstra, J.G., Meijer, S., Lie, K.I., Reitsma, W.D. Eur. Heart J. (1995) [Pubmed]
  10. Comparison of two methods of determining renal perfusion with and without captopril pretreatment in groups of patients with left ventricular dysfunction. Motwani, J.G., Fenwick, M.K., Struthers, A.D. Eur. Heart J. (1994) [Pubmed]
  11. Technetium-99m-MAG3 clearance as a parameter of effective renal plasma flow in patients with proteinuria and lowered serum albumin levels. Kengen, R.A., Meijer, S., Beekhuis, H., Piers, D.A. J. Nucl. Med. (1991) [Pubmed]
  12. Sequential effects of cyclosporine therapy on blood pressure, renal function and neurohormones. Sturrock, N.D., Lang, C.C., Baylis, P.H., Struthers, A.D. Kidney Int. (1994) [Pubmed]
  13. Prostaglandins maintain renal vasodilation and hyperfiltration during chronic nitric oxide synthase blockade in conscious pregnant rats. Danielson, L.A., Conrad, K.P. Circ. Res. (1996) [Pubmed]
  14. Nephrotic-range proteinuria in patients with renovascular disease. Halimi, J.M., Ribstein, J., Du Cailar, G., Mimran, A. Am. J. Med. (2000) [Pubmed]
  15. Effects of propranolol therapy on renal function and body fluid composition. Bauer, J.H. Arch. Intern. Med. (1983) [Pubmed]
  16. Dissociation of blood volume and flow in regulation of salt and water balance in burn patients. Cioffi, W.G., Vaughan, G.M., Heironimus, J.D., Jordan, B.S., Mason, A.D., Pruitt, B.A. Ann. Surg. (1991) [Pubmed]
  17. The differential effects of circulating norepinephrine and neuronally released norepinephrine on sodium excretion in humans. Lang, C.C., Rahman, A.R., Balfour, D.J., Struthers, A.D. Clin. Pharmacol. Ther. (1993) [Pubmed]
  18. Prospective analysis of strategies for diagnosing renovascular hypertension. Svetkey, L.P., Himmelstein, S.I., Dunnick, N.R., Wilkinson, R.H., Bollinger, R.R., McCann, R.L., Beytas, E.M., Klotman, P.E. Hypertension (1989) [Pubmed]
  19. Renal mu opioid receptor mechanisms in regulation of renal function in rats. Kapusta, D.R., Jones, S.Y., DiBona, G.F. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  20. Effects of a long-acting formulation of octreotide on renal function and renal sodium handling in cirrhotic patients with portal hypertension: a randomized, double-blind, controlled trial. Ottesen, L.H., Aagaard, N.K., Kiszka-Kanowitz, M., Rehling, M., Henriksen, J.H., Pedersen, E.B., Flyvbjerg, A., Bendtsen, F. Hepatology (2001) [Pubmed]
  21. Effects of smoking on renal hemodynamics in healthy volunteers and in patients with glomerular disease. Ritz, E., Benck, U., Franek, E., Keller, C., Seyfarth, M., Clorius, J. J. Am. Soc. Nephrol. (1998) [Pubmed]
  22. Plasma endothelin levels in patients with cirrhosis and their relationships to the severity of cirrhosis and renal function. Tsai, Y.T., Lin, H.C., Yang, M.C., Lee, F.Y., Hou, M.C., Chen, L.S., Lee, S.D. J. Hepatol. (1995) [Pubmed]
  23. Endothelin mediates renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. Conrad, K.P., Gandley, R.E., Ogawa, T., Nakanishi, S., Danielson, L.A. Am. J. Physiol. (1999) [Pubmed]
  24. Effect of long-acting somatostatin analog (Somatulin) on renal hyperfiltration in patients with IDDM. Jacobs, M.L., Derkx, F.H., Stijnen, T., Lamberts, S.W., Weber, R.F. Diabetes Care (1997) [Pubmed]
  25. Gender hormones and the progression of experimental polycystic kidney disease. Stringer, K.D., Komers, R., Osman, S.A., Oyama, T.T., Lindsley, J.N., Anderson, S. Kidney Int. (2005) [Pubmed]
  26. Measurement of effective renal plasma flow: a comparison of methods. Fine, E.J., Axelrod, M., Gorkin, J., Saleemi, K., Blaufox, M.D. J. Nucl. Med. (1987) [Pubmed]
  27. Renal hemodynamics and segmental tubular reabsorption in early type 1 diabetes. Hannedouche, T.P., Delgado, A.G., Gnionsahe, D.A., Boitard, C., Lacour, B., Grünfeld, J.P. Kidney Int. (1990) [Pubmed]
  28. Renal functional adaptation of the adult kidney following transplantation to the child. Bohlin, A.B., Berg, U. Kidney Int. (1991) [Pubmed]
WikiGenes - Universities