The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Saponaria

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Saponaria

 

High impact information on Saponaria

  • A monoclonal antibody reactive with the immunoglobulin heavy chain (TEC IgM) has been conjugated to saporin-6 (SAP), which is the major ribosome-inactivating protein from the seeds of the plant Saponaria officinalis [3].
  • OKT1-SAP comprised the OKT1 (CD5) monoclonal antibody disulfide linked to saporin-6 (SAP) ribosome-inactivating protein from the plant Saponaria officinalis [4].
  • The highly purified saponin derivative, QS-21, from the Quillaja saponaria Molina tree has been proved to be safe for parenteral administration and represents a potential alternative to bacterial enterotoxin derivatives as a mucosal adjuvant [5].
  • We synthesized a conjugate between human uPA and saporin (SAP), a ribosome-inactivating protein produced by Saponaria officinalis [6].
  • ISCOMs are open cage-like complexes typically with a diameter of about 40 nm that are built up by cholesterol, lipid, immunogen, and saponins from the bark of the tree Quillaia saponaria Molina [7].
 

Anatomical context of Saponaria

 

Associations of Saponaria with chemical compounds

  • Ribosome-inactivating proteins, similar to those already known [Barbieri & Stirpe (1982) Cancer Surveys 1, 489-520] were purified from the seeds of Saponaria officinalis (two proteins), of Agrostemma githago (three proteins), and of Asparagus officinalis (three proteins), and from the latex of Hura crepitans (one protein) [11].
  • Four groups of rats were fed, for 45 days, one of the following semipurified diets containing sucrose 55% (w/w) and (a) casein 25%, (b) casein 24%, saponins (from Saponaria officinalis) 1%, (c) isolated soy protein 25%, (d) soy protein 24%, saponins 1% [12].
  • The presence of aldehyde groups at C-23 and C-24 of the triterpen aglycon moiety was disclosed in 1H NMR spectra of both the Riedel de Haen saponin (R) (delta 9.336) and Quillaja saponaria QuilA saponin (delta 9.348) [1].
  • However, one sample labelled as Q. saponaria appeared to lack all saponins containing rhamnose in the C-3 saccharide [13].
  • A method for detecting cadmium uptake in leaves of Saponaria officinalis doped with a solution of cadmium acetate is described [14].
 

Gene context of Saponaria

  • The present paper describes two immunoconjugates consisting of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), named Mint5, covalently linked to the type 1 ribosome-inactivating proteins (RIPs) ocymoidine (Ocy) and pyramidatine (Pyra) from Saponaria ocymoides and Vaccaria pyramidata respectively [15].
  • The authors attached basic fibroblast growth factor (FGF-2), a growth factor for numerous tumors and normal cell types, to saporin (SAP), a ribosome-inactivating protein isolated from the plant Saponaria officinalis [16].
  • A monoclonal antibody (MAB) reactive with CD71 has been conjugated to the Saponaria officinalis seed ribosome-inactivating protein (SO6) [17].
  • QS21 saponin purified from Quillaja saponaria promoted the production of IgG1 and IgG2a antibodies in a large extent against the both particulate and soluble antigens, while this saponin has strong hemolytic activity [18].
  • Structural studies of triterpenoid saponins with new acyl components from Quillaja saponaria Molina [19].

References

  1. Protective vaccination against murine visceral leishmaniasis using aldehyde-containing Quillaja saponaria sapogenins. Palatnik de Sousa, C.B., Santos, W.R., Casas, C.P., Paraguai de Souza, E., Tinoco, L.W., da Silva, B.P., Palatnik, M., Parente, J.P. Vaccine (2004) [Pubmed]
  2. HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. Ricci, C., Polito, L., Nanni, P., Landuzzi, L., Astolfi, A., Nicoletti, G., Rossi, I., De Giovanni, C., Bolognesi, A., Lollini, P.L. J. Immunother. (2002) [Pubmed]
  3. Activity of a monoclonal antibody-saporin-6 conjugate against B-lymphoma cells. Bregni, M., Lappi, D.A., Siena, S., Formosa, A., Villa, S., Soria, M., Bonadonna, G., Gianni, A.M. J. Natl. Cancer Inst. (1988) [Pubmed]
  4. Immunotoxin-mediated inhibition of chronic lymphocytic leukemia cell proliferation in humans. Siena, S., Bregni, M., Formosa, A., Brando, B., Marenco, P., Lappi, D.A., Bonadonna, G., Gianni, A.M. Cancer Res. (1989) [Pubmed]
  5. Oral QS-21 requires early IL-4 help for induction of mucosal and systemic immunity. Boyaka, P.N., Marinaro, M., Jackson, R.J., van Ginkel, F.W., Cormet-Boyaka, E., Kirk, K.L., Kensil, C.R., McGhee, J.R. J. Immunol. (2001) [Pubmed]
  6. A conjugate between human urokinase and saporin, a type-1 ribosome-inactivating protein, is selectively cytotoxic to urokinase receptor-expressing cells. Cavallaro, U., del Vecchio, A., Lappi, D.A., Soria, M.R. J. Biol. Chem. (1993) [Pubmed]
  7. ISCOMs: an adjuvant with multiple functions. Sjölander, A., Cox, J.C., Barr, I.G. J. Leukoc. Biol. (1998) [Pubmed]
  8. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Marciani, D.J., Press, J.B., Reynolds, R.C., Pathak, A.K., Pathak, V., Gundy, L.E., Farmer, J.T., Koratich, M.S., May, R.D. Vaccine (2000) [Pubmed]
  9. An immunotoxin containing a rat IgM monoclonal antibody (Campath 1) and saporin 6: effect on T lymphocytes and hemopoietic cells. Tazzari, P.L., Barbieri, L., Gobbi, M., Dinota, A., Rizzi, S., Bontadini, A., Pession, A., Tura, S., Stirpe, F. Cancer Immunol. Immunother. (1988) [Pubmed]
  10. Selective lesions of rabbit extraocular muscles injected with the anti-AChR immunotoxin saporin-mAb 73. Campos, E.C., Schiavi, C., Bolognesi, A., Bellusci, C., Lubelli, C., Duca, A., Polito, L., Poulas, K., Tzartos, S.J., Stirpe, F. Curr. Eye Res. (2002) [Pubmed]
  11. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Stirpe, F., Gasperi-Campani, A., Barbieri, L., Falasca, A., Abbondanza, A., Stevens, W.A. Biochem. J. (1983) [Pubmed]
  12. Effects of soy protein and saponins on serum, tissue and feces steroids in rat. Sautier, C., Doucet, C., Flament, C., Lemonnier, D. Atherosclerosis (1979) [Pubmed]
  13. Metabolomic analysis of saponins in crude extracts of Quillaja saponaria by liquid chromatography/mass spectrometry for product authentication. Kite, G.C., Howes, M.J., Simmonds, M.S. Rapid Commun. Mass Spectrom. (2004) [Pubmed]
  14. Differences in X-ray absorption due to cadmium treatment in Saponaria officinalis leaves. Reale, L., Lai, A., Tucci, A., Poma, A., Faenov, A., Pikuz, T., Flora, F., Spano, L., Limongi, T., Palladino, L., Ritucci, A., Tomassetti, G., Petrocelli, G., Francucci, M., Martellucci, S. Microsc. Res. Tech. (2004) [Pubmed]
  15. Immunoconjugates made of an anti-EGF receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Di Massimo, A.M., Di Loreto, M., Pacilli, A., Raucci, G., D'Alatri, L., Mele, A., Bolognesi, A., Polito, L., Stirpe, F., De Santis, R. Br. J. Cancer (1997) [Pubmed]
  16. Anti-B16-F10 melanoma activity of a basic fibroblast growth factor-saporin mitotoxin. Ying, W., Martineau, D., Beitz, J., Lappi, D.A., Baird, A. Cancer (1994) [Pubmed]
  17. Selection and characterization of early hematopoietic progenitors using an anti-CD71/S06 immunotoxin. Benedetti, G., Bondesan, P., Caracciolo, D., Cherasco, C., Ruggieri, D., Gastaldi, M.E., Pileri, A., Gianni, A.M., Tarella, C. Exp. Hematol. (1994) [Pubmed]
  18. Influence of antigenic forms and adjuvants on the IgG subclass antibody response to Aujeszky's disease virus in mice. Katayama, S., Oda, K., Ohgitani, T., Hirahara, T., Shimizu, Y. Vaccine (1999) [Pubmed]
  19. Structural studies of triterpenoid saponins with new acyl components from Quillaja saponaria Molina. Guo, S., Kenne, L. Phytochemistry (2000) [Pubmed]
 
WikiGenes - Universities