The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Thlaspi

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Thlaspi

  • The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli [1].
 

High impact information on Thlaspi

  • Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators [2].
  • A study of ZNT1 expression and high-affinity Zn(2+) uptake in roots of T. caerulescens and in a related nonaccumulator, Thlaspi arvense, showed that alteration in the regulation of ZNT1 gene expression by plant Zn status results in the overexpression of this transporter and in increased Zn influx in roots of the hyperaccumulating Thlaspi species [3].
  • Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level [4].
  • A number of Thlaspi genes that conferred Cd tolerance to yeast were identified, including possible metal-binding ligands from the metallothionein gene family, and a P-type ATPase that is a member of the P1B subfamily of purported heavy metal-translocating ATPases [5].
  • Overexpression of the plant CDF family member metal tolerance protein 1 (MTP1) from the Ni/Zn hyperaccumulator Thlaspi goesingense (TgMTP1), in the Saccharomyces cerevisiaeDelta zinc resistance conferring (zrc)1Delta cobalt transporter (cot)1 double mutant, suppressed the Zn sensitivity of this strain [6].
 

Chemical compound and disease context of Thlaspi

 

Biological context of Thlaspi

  • Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens [8].
  • The deduced amino acid sequences of the two Zip transporter genes (TjZnt1, TjZnt2) and one Nramp transporter gene cloned had high homologies with TcZNT1 and TcZNT2 of Thlaspi caerulescens and AtNRAMP4 of Arabidopsis thaliana, respectively, and were predicted as integral membrane proteins with 6 or 12 transmembrane domains [9].
 

Associations of Thlaspi with chemical compounds

  • Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens [10].
  • To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, we investigated the regulation of His biosynthesis at both the molecular and biochemical levels [11].
  • Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators [12].
  • Defatted field pennycress (Thlaspi arvense L.) seedmeal was found to completely inhibit seedling germination/emergence when added to a sandy loam soil containing wheat (Triticum aestivum L.) and arugula [Eruca vesicaria (L.) Cav. subsp. sativa (Mill.) Thell.] seeds at levels of 1.0% w/w or higher [13].
 

Gene context of Thlaspi

  • Cloning and sequencing of a full-length cDNA from Thlaspi arvense L. that encodes a cytochrome P-450 [14].
  • Northern analysis of ZNT1 and its homologue in the two Thlaspi species indicated that enhanced Zn transport in T. caerulescens results from a constitutively high expression of the ZNT1 gene in roots and shoots [15].
  • CLUSTAL analysis revealed a close relationship of BjPCS1 with PCS proteins from Arabidopsis thaliana and Thlaspi caerulescens [16].
  • To investigate its role in vivo, we expressed a nicotianamine synthase cDNA (TcNAS1) isolated from the polymetallic hyperaccumulator Thlaspi caerulescens in Arabidopsis thaliana [17].
  • Using the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO), the role for phytochelatins (PCs) was evaluated in Cu, Cd, Zn, As, Ni, and Co tolerance in non-metallicolous and metallicolous, hypertolerant populations of Silene vulgaris (Moench) Garcke, Thlaspi caerulescens J.&C [18].
 

Analytical, diagnostic and therapeutic context of Thlaspi

References

  1. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Freeman, J.L., Persans, M.W., Nieman, K., Salt, D.E. Appl. Environ. Microbiol. (2005) [Pubmed]
  2. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., Salt, D.E. Plant Cell (2004) [Pubmed]
  3. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L., Lasat, M.M., Garvin, D.F., Eide, D., Kochian, L.V. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  4. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Cosio, C., Martinoia, E., Keller, C. Plant Physiol. (2004) [Pubmed]
  5. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Papoyan, A., Kochian, L.V. Plant Physiol. (2004) [Pubmed]
  6. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Kim, D., Gustin, J.L., Lahner, B., Persans, M.W., Baek, D., Yun, D.J., Salt, D.E. Plant J. (2004) [Pubmed]
  7. Glyphosate is an inhibitor of plant cytochrome P450: functional expression of Thlaspi arvensae cytochrome P45071B1/reductase fusion protein in Escherichia coli. Lamb, D.C., Kelly, D.E., Hanley, S.Z., Mehmood, Z., Kelly, S.L. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  8. Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. Roosens, N.H., Bernard, C., Leplae, R., Verbruggen, N. FEBS Lett. (2004) [Pubmed]
  9. Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Mizuno, T., Usui, K., Horie, K., Nosaka, S., Mizuno, N., Obata, H. Plant Physiol. Biochem. (2005) [Pubmed]
  10. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Lombi, E., Tearall, K.L., Howarth, J.R., Zhao, F.J., Hawkesford, M.J., McGrath, S.P. Plant Physiol. (2002) [Pubmed]
  11. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Persans, M.W., Yan, X., Patnoe, J.M., Krämer, U., Salt, D.E. Plant Physiol. (1999) [Pubmed]
  12. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Freeman, J.L., Garcia, D., Kim, D., Hopf, A., Salt, D.E. Plant Physiol. (2005) [Pubmed]
  13. Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal. Vaughn, S.F., Isbell, T.A., Weisleder, D., Berhow, M.A. J. Chem. Ecol. (2005) [Pubmed]
  14. Cloning and sequencing of a full-length cDNA from Thlaspi arvense L. that encodes a cytochrome P-450. Udvardi, M.K., Metzger, J.D., Krishnapillai, V., Peacock, W.J., Dennis, E.S. Plant Physiol. (1994) [Pubmed]
  15. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D., Kochian, L.V. J. Exp. Bot. (2000) [Pubmed]
  16. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Heiss, S., Wachter, A., Bogs, J., Cobbett, C., Rausch, T. J. Exp. Bot. (2003) [Pubmed]
  17. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Pianelli, K., Mari, S., Marquès, L., Lebrun, M., Czernic, P. Transgenic Res. (2005) [Pubmed]
  18. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., Bleeker, P.M. J. Exp. Bot. (2002) [Pubmed]
 
WikiGenes - Universities