The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tamarindus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tamarindus

 

High impact information on Tamarindus

  • AtFUT3, AtFUT4, and AtFUT5 were expressed in tobacco (Nicotiana tabacum L. cv BY2) suspension culture cells, and the resulting proteins did not transfer fucose (Fuc) from GDP-Fuc to tamarind xyloglucan [4].
  • Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol [5].
  • These results suggest that the tamarind seed polysaccharide prolongs the precorneal residence times of antibiotics and enhances drug accumulation in the cornea, probably by reducing the washout of topically administered drugs [1].
  • Effect of a novel mucoadhesive polysaccharide obtained from tamarind seeds on the intraocular penetration of gentamicin and ofloxacin in rabbits [6].
  • Chloroquine bioavailability in healthy males was examined following oral coadministration of 600 mg with three common Sudanese beverages, Aradaib (Tamarindus indica), Karkadi (Hibiscus sabdarifa) and Lemon (Citrus limetta) and drinking water [7].
 

Biological context of Tamarindus

 

Anatomical context of Tamarindus

 

Associations of Tamarindus with chemical compounds

  • The tamarind XG trimer which accepts fucose is therefore composed mainly of the subunit sequence: octa-octa-nonasaccharide (reducing) [8].
  • The transfer was more effective using nonfucosylated tamarind seed xyloglucan than with pea wall xyloglucan in which almost all galactose units are already fucosylated [14].
  • The apparent Km for fucosyl transfer to tamarind XG by the membrane-bound or solubilized enzyme was about 80 microM GDP-fucose [15].
  • The solubilized fucosyltransferase was electrophoresed on nondenaturing polyacrylamide slab gels containing 0.02% (w/v) tamarind XG, and its activity located by incubation in GDP-[14C]fucose, washing, and autoradiographing the gel [15].
  • Effect of tamarind ingestion on fluoride excretion in humans [16].
 

Gene context of Tamarindus

  • A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase [12].
  • The antioxidant capacities of the Soxhlet methanolic extracts were determined, and indicates that Tamarind may be an important source of cancer chemopreventive natural products in tropical regions [17].
  • In vivo bioinsecticidal activity toward Ceratitis capitata (fruit fly) and Callosobruchus maculatus (cowpea weevil) and in vitro bioinsecticidal activity toward different orders of insect pests of a trypsin inhibitor purified from tamarind tree (Tamarindus indica) seeds [18].
  • The seed coat extract of Tamarindus indica, a polyphenolic flavonoid, has been shown to have antioxidant properties [19].
  • A detailed analysis of the data seems to suggest that tamarind gum solutions are slightly perturbed by the effect of excluded volume, whereas detarium gum samples are close to the theta state [20].
 

Analytical, diagnostic and therapeutic context of Tamarindus

References

  1. A mucoadhesive polymer extracted from tamarind seed improves the intraocular penetration and efficacy of rufloxacin in topical treatment of experimental bacterial keratitis. Ghelardi, E., Tavanti, A., Davini, P., Celandroni, F., Salvetti, S., Parisio, E., Boldrini, E., Senesi, S., Campa, M. Antimicrob. Agents Chemother. (2004) [Pubmed]
  2. Microbiological quality of sous and tamarind, traditional drinks consumed in Jordan. Nassereddin, R.A., Yamani, M.I. J. Food Prot. (2005) [Pubmed]
  3. Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction. Izzo, A.A., Di Carlo, G., Borrelli, F., Ernst, E. International journal of cardiology. (2005) [Pubmed]
  4. Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. Sarria, R., Wagner, T.A., O'Neill, M.A., Faik, A., Wilkerson, C.G., Keegstra, K., Raikhel, N.V. Plant Physiol. (2001) [Pubmed]
  5. Xyloglucan galactosyl- and fucosyltransferase activities from pea epicotyl microsomes. Faïk, A., Chileshe, C., Sterling, J., Maclachlan, G. Plant Physiol. (1997) [Pubmed]
  6. Effect of a novel mucoadhesive polysaccharide obtained from tamarind seeds on the intraocular penetration of gentamicin and ofloxacin in rabbits. Ghelardi, E., Tavanti, A., Celandroni, F., Lupetti, A., Blandizzi, C., Boldrini, E., Campa, M., Senesi, S. J. Antimicrob. Chemother. (2000) [Pubmed]
  7. Significant reduction in chloroquine bioavailability following coadministration with the Sudanese beverages Aradaib, Karkadi and Lemon. Mahmoud, B.M., Ali, H.M., Homeida, M.M., Bennett, J.L. J. Antimicrob. Chemother. (1994) [Pubmed]
  8. Acceptor requirements for GDP-fucose:xyloglucan 1,2-alpha-L-fucosyltransferase activity solubilized from pea epicotyl membranes. Maclachlan, G., Levy, B., Farkas, V. Arch. Biochem. Biophys. (1992) [Pubmed]
  9. Inhibition of UV-induced immune suppression and interleukin-10 production by plant oligosaccharides and polysaccharides. Strickland, F.M., Darvill, A., Albersheim, P., Eberhard, S., Pauly, M., Pelley, R.P. Photochem. Photobiol. (1999) [Pubmed]
  10. Effects of dietary tamarind on cholesterol metabolism in laying hens. Chowdhury, S.R., Sarker, D.K., Chowdhury, S.D., Smith, T.K., Roy, P.K., Wahid, M.A. Poult. Sci. (2005) [Pubmed]
  11. A novel xyloglucan from seeds of Afzelia africana Se. Pers.--extraction, characterization, and conformational properties. Ren, Y., Picout, D.R., Ellis, P.R., Ross-Murphy, S.B., Reid, J.S. Carbohydr. Res. (2005) [Pubmed]
  12. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. Fook, J.M., Macedo, L.L., Moura, G.E., Teixeira, F.M., Oliveira, A.S., Queiroz, A.F., Sales, M.P. Life Sci. (2005) [Pubmed]
  13. Inhibitory effect of oligosaccharides derived from plant xyloglucan on intestinal glucose absorption in rat. Sone, Y., Makino, C., Misaki, A. J. Nutr. Sci. Vitaminol. (1992) [Pubmed]
  14. Fucosylation of exogenous xyloglucans by pea microsomal membranes. Farkas, V., Maclachlan, G. Arch. Biochem. Biophys. (1988) [Pubmed]
  15. Solubilization and properties of GDP-fucose: xyloglucan 1,2-alpha-L-fucosyltransferase from pea epicotyl membranes. Hanna, R., Brummell, D.A., Camirand, A., Hensel, A., Russell, E.F., Maclachlan, G.A. Arch. Biochem. Biophys. (1991) [Pubmed]
  16. Effect of tamarind ingestion on fluoride excretion in humans. Khandare, A.L., Rao, G.S., Lakshmaiah, N. European journal of clinical nutrition. (2002) [Pubmed]
  17. Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Sudjaroen, Y., Haubner, R., Würtele, G., Hull, W.E., Erben, G., Spiegelhalder, B., Changbumrung, S., Bartsch, H., Owen, R.W. Food Chem. Toxicol. (2005) [Pubmed]
  18. In vivo bioinsecticidal activity toward Ceratitis capitata (fruit fly) and Callosobruchus maculatus (cowpea weevil) and in vitro bioinsecticidal activity toward different orders of insect pests of a trypsin inhibitor purified from tamarind tree (Tamarindus indica) seeds. Araújo, C.L., Bezerra, I.W., Oliveira, A.S., Moura, F.T., Macedo, L.L., Gomes, C.E., Barbosa, A.E., Macedo, F.P., Souza, T.M., Franco, O.L., Bloch-J, C., Sales, M.P. J. Agric. Food Chem. (2005) [Pubmed]
  19. Extract of the seed coat of Tamarindus indica inhibits nitric oxide production by murine macrophages in vitro and in vivo. Komutarin, T., Azadi, S., Butterworth, L., Keil, D., Chitsomboon, B., Suttajit, M., Meade, B.J. Food Chem. Toxicol. (2004) [Pubmed]
  20. Pressure cell assisted solubilization of xyloglucans: tamarind seed polysaccharide and detarium gum. Picout, D.R., Ross-Murphy, S.B., Errington, N., Harding, S.E. Biomacromolecules (2003) [Pubmed]
  21. Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. Takahashi, A., Suzuki, S., Kawasaki, N., Kubo, W., Miyazaki, S., Loebenberg, R., Bachynsky, J., Attwood, D. International journal of pharmaceutics. (2002) [Pubmed]
  22. Effect of Tamarindus indica. L on the bioavailability of ibuprofen in healthy human volunteers. Garba, M., Yakasai, I.A., Bakare, M.T., Munir, H.Y. European journal of drug metabolism and pharmacokinetics. (2003) [Pubmed]
 
WikiGenes - Universities