The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Xylella

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Xylella

  • GyrA (Leu-55 to Gln-155, Escherichia coli numbering), GyrB (Met-391 to Phe-513), ParC (Ile-34 to Arg-124), and ParE (Leu-396 to Leu-567) fragments from strain ATCC 13637 showed high degrees of identity to the corresponding regions from the phytopathogen Xylella fastidiosa, with the degrees of identity ranging from 85.0 to 93.5% [1].
  • In this study, an efficient expression system, based on the pET32Xa/LIC vector, for producing a Xylella fastidiosa virulence-associated protein D, found to have a strong similarity to Riemerella anatipestifer and Actinobacillus actinomycetencomitans VapD protein, is presented [2].
  • RESULTS: This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa [3].
  • The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity [4].
 

High impact information on Xylella

  • A genomic approach to the understanding of Xylella fastidiosa pathogenicity [5].
  • Upstream migration of Xylella fastidiosa via pilus-driven twitching motility [6].
  • Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences [7].
  • These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa [8].
  • Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for beta-galactosidase, as a model [9].
 

Chemical compound and disease context of Xylella

  • Molecular models for shikimate pathway enzymes of Xylella fastidiosa [10].
  • The GumH enzyme from Xylella fastidiosa catalyzes the transfer reaction of a mannose from GDP-mannose to the carrier lipid cellobiose-pyrophosphate-polyprenol (Glc(2)-PP-Lip), an intermediary in the reaction for the synthesis of the exopolysaccharide (EPS) fastidian gum [11].
  • Xylella fastidiosa organic hydroperoxide-resistance protein (Ohr) is a dithiol-dependent peroxidase that is widely conserved in several pathogenic bacteria with high affinity for organic hydroperoxides [12].
  • A simple defined solid medium containing citrate and succinate, three amino acids (L-glutamine, L-asparagine, and L-cysteine), hemin chloride, potato starch, gellan gum (GelRite), and mineral salts supported the growth of grape strains of Xylella fastidiosa, the bacterial pathogen that causes Pierce's disease of grape [13].
  • Whole-genome expression profiling of Xylella fastidiosa in response to growth on glucose [14].
 

Biological context of Xylella

 

Gene context of Xylella

  • Cloning, expression, and purification of the virulence-associated protein D from Xylella fastidiosa [2].
  • Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa [18].
  • Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered [19].
  • When a DNA fragment encompassing part of the Xylella xpsD gene was cloned into pSP3, specific integration of the construct into this gene was observed in 10% of the transformants, as early as after two passages of the culture [20].
  • The organization of these transfer genes in pIPO2 is highly similar to the genetic organization seen in the environmental plasmid pSB102 and in pXF51 from the plant pathogen Xylella fastidiosa [21].
 

Analytical, diagnostic and therapeutic context of Xylella

References

  1. Topoisomerase II and IV quinolone resistance-determining regions in Stenotrophomonas maltophilia clinical isolates with different levels of quinolone susceptibility. Valdezate, S., Vindel, A., Echeita, A., Baquero, F., Cantó, R. Antimicrob. Agents Chemother. (2002) [Pubmed]
  2. Cloning, expression, and purification of the virulence-associated protein D from Xylella fastidiosa. Catani, C.F., Azzoni, A.R., Paula, D.P., Tada, S.F., Rosselli, L.K., de Souza, A.P., Yano, T. Protein Expr. Purif. (2004) [Pubmed]
  3. Bacterial variations on the methionine salvage pathway. Sekowska, A., Dénervaud, V., Ashida, H., Michoud, K., Haas, D., Yokota, A., Danchin, A. BMC Microbiol. (2004) [Pubmed]
  4. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa. Leite, B., Ishida, M.L., Alves, E., Carrer, H., Pascholati, S.F., Kitajima, E.W. Braz. J. Med. Biol. Res. (2002) [Pubmed]
  5. A genomic approach to the understanding of Xylella fastidiosa pathogenicity. Lambais, M.R., Goldman, M.H., Camargo, L.E., Goldman, G.H. Curr. Opin. Microbiol. (2000) [Pubmed]
  6. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. Meng, Y., Li, Y., Galvani, C.D., Hao, G., Turner, J.N., Burr, T.J., Hoch, H.C. J. Bacteriol. (2005) [Pubmed]
  7. Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Rodrigues, J.L., Silva-Stenico, M.E., Gomes, J.E., Lopes, J.R., Tsai, S.M. Appl. Environ. Microbiol. (2003) [Pubmed]
  8. oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Yen, M.R., Lin, N.T., Hung, C.H., Choy, K.T., Weng, S.F., Tseng, Y.H. Appl. Environ. Microbiol. (2002) [Pubmed]
  9. Gene disruption by homologous recombination in the Xylella fastidiosa citrus variegated chlorosis strain. Gaurivaud, P., Souza, L.C., Virgílio, A.C., Mariano, A.G., Palma, R.R., Monteiro, P.B. Appl. Environ. Microbiol. (2002) [Pubmed]
  10. Molecular models for shikimate pathway enzymes of Xylella fastidiosa. Arcuri, H.A., Canduri, F., Pereira, J.H., da Silveira, N.J., Camera Júnior, J.C., de Oliveira, J.S., Basso, L.A., Palma, M.S., Santos, D.S., de Azevedo Júnior, W.F. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  11. Overexpression, purification, biochemical characterization, and molecular modeling of recombinant GDP-mannosyltransferase (GumH) from Xylella fastidiosa. Muniz, J.R., Alves, C.A., de Pieri, C., Beltramini, L.M., Selistre-de-Araújo, H.S., Vettore, A.L., da Silva, F.R., Arruda, P., Garratt, R.C., Oliva, G., Souza, D.H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  12. Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa. de Oliveira, M.A., Netto, L.E., Medrano, F.J., Barbosa, J.A., Alves, S.V., Cussiol, J.R., Guimarães, B.G. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  13. Xylella fastidiosa cultivation on a minimal solid defined medium. Almeida, R.P., Mann, R., Purcell, A.H. Curr. Microbiol. (2004) [Pubmed]
  14. Whole-genome expression profiling of Xylella fastidiosa in response to growth on glucose. Pashalidis, S., Moreira, L.M., Zaini, P.A., Campanharo, J.C., Alves, L.M., Ciapina, L.P., Vêncio, R.Z., Lemos, E.G., Da Silva, A.M., Da Silva, A.C. OMICS (2005) [Pubmed]
  15. Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes. Guilhabert, M.R., Hoffman, L.M., Mills, D.A., Kirkpatrick, B.C. Mol. Plant Microbe Interact. (2001) [Pubmed]
  16. Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity. de Souza, A.A., Takita, M.A., Coletta-Filho, H.D., Caldana, C., Goldman, G.H., Yanai, G.M., Muto, N.H., de Oliveira, R.C., Nunes, L.R., Machado, M.A. Mol. Plant Microbe Interact. (2003) [Pubmed]
  17. Construction of a shuttle vector and transformation of Xylella fastidiosa with plasmid DNA. Qin, X., Hartung, J.S. Curr. Microbiol. (2001) [Pubmed]
  18. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa. Coltri, P.P., Rosato, Y.B. Antonie Van Leeuwenhoek (2005) [Pubmed]
  19. Disruption of Xylella fastidiosa CVC gumB and gumF genes affects biofilm formation without a detectable influence on exopolysaccharide production. Souza, L.C., Wulff, N.A., Gaurivaud, P., Mariano, A.G., Virgílio, A.C., Azevedo, J.L., Monteiro, P.B. FEMS Microbiol. Lett. (2006) [Pubmed]
  20. Site-directed gene disruption in Xylella fastidiosa. da Silva Neto, J.F., Koide, T., Gomes, S.L., Marques, M.V. FEMS Microbiol. Lett. (2002) [Pubmed]
  21. The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Tauch, A., Schneiker, S., Selbitschka, W., Pühler, A., van Overbeek, L.S., Smalla, K., Thomas, C.M., Bailey, M.J., Forney, L.J., Weightman, A., Ceglowski, P., Pembroke, T., Tietze, E., Schröder, G., Lanka, E., van Elsas, J.D. Microbiology (Reading, Engl.) (2002) [Pubmed]
  22. Sequence analysis of a 1296-nucleotide plasmid from Xylella fastidiosa. Pooler, M.R., Hartung, J.S., Fenton, R.G. FEMS Microbiol. Lett. (1997) [Pubmed]
 
WikiGenes - Universities