The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Alcaligenes

  • Here we describe targeting of the mouse metallothionein I (MT) protein to the cell surface of the heavy metal-tolerant Ralstonia eutropha (formerly Alcaligenes eutrophus) CH34 strain, which is adapted to thrive in soils highly polluted with metal ions [1].
  • The Cu(II) sites of azurins, the blue single copper proteins, isolated from Pseudomonas aeruginosa and Alcaligenes spp [2].
  • Among five cysteine residues (Cys-40, Cys-115, Cys-162, Cys-163, and Cys-218) in the Alcaligenes nitrilase, only Cys-163 was conserved at the corresponding position in the Klebsiella nitrilase [3].
  • The first family (the resistance/nodulation/cell division (RND) family) includes (i) two metal-resistance efflux pumps in Alcaligenes eutrophus (CzcA and CnrA), (ii) three proteins which function together in nodulation of alfalfa roots by Rhizobium meliloti (NoIGHI), and (iii) a cell division protein in Escherichia coli (EnvD) [4].
  • BMS-180680 was moderately active (MIC90s of 4 to 8 microg/ml) against Alcaligenes spp. and Acinetobacter lwoffii and less active (MIC90, 16 microg/ml) against Acinetobacter calcoaceticus-Acinetobacter baumanii complex [5].

High impact information on Alcaligenes


Chemical compound and disease context of Alcaligenes


Biological context of Alcaligenes


Anatomical context of Alcaligenes


Gene context of Alcaligenes

  • The napA gene codes for a protein with a high homology to the periplasmic nitrate reductase from Alcaligenes eutrophus and, to a lesser extent, to other prokaryotic nitrate reductases and molybdenum-containing enzymes [23].
  • Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134 [24].
  • Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134 [25].
  • Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product [26].
  • The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized [27].

Analytical, diagnostic and therapeutic context of Alcaligenes


  1. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Valls, M., Atrian, S., de Lorenzo, V., Fernández, L.A. Nat. Biotechnol. (2000) [Pubmed]
  2. Long-range intramolecular electron transfer in azurins. Farver, O., Pecht, I. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  3. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Kobayashi, M., Izui, H., Nagasawa, T., Yamada, H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  4. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Saier, M.H., Tam, R., Reizer, A., Reizer, J. Mol. Microbiol. (1994) [Pubmed]
  5. Antibacterial activity of BMS-180680, a new catechol-containing monobactam. Fung-Tomc, J., Bush, K., Minassian, B., Kolek, B., Flamm, R., Gradelski, E., Bonner, D. Antimicrob. Agents Chemother. (1997) [Pubmed]
  6. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Strange, R.W., Dodd, F.E., Abraham, Z.H., Grossmann, J.G., Brüser, T., Eady, R.R., Smith, B.E., Hasnain, S.S. Nat. Struct. Biol. (1995) [Pubmed]
  7. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Gerngross, T.U., Martin, D.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  8. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Nawrath, C., Poirier, Y., Somerville, C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Nies, D.H., Nies, A., Chu, L., Silver, S. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  10. Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Nakatsu, C., Ng, J., Singh, R., Straus, N., Wyndham, C. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  11. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. Hylemon, P.B., Harder, J. FEMS Microbiol. Rev. (1998) [Pubmed]
  12. Dependence on chain length of antitumor activity of (1 leads to 3)-beta-D-glucan from Alcaligenes faecalis var. myxogenes, IFO 13140, and its acid-degraded products. Sasaki, T., Abiko, N., Sugino, Y., Nitta, K. Cancer Res. (1978) [Pubmed]
  13. Na+/H+ exchange modulates rat neutrophil mediated tumor cytotoxicity. Araki, A., Inoue, T., Cragoe, E.J., Sendo, F. Cancer Res. (1991) [Pubmed]
  14. Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus. Eitinger, T., Friedrich, B. J. Biol. Chem. (1991) [Pubmed]
  15. Nucleotide sequence of metapyrocatechase I (catechol 2,3-oxygenase I) gene mpcI from Alcaligenes eutrophus JMP222. Kabisch, M., Fortnagel, P. Nucleic Acids Res. (1990) [Pubmed]
  16. The active site of arsenite oxidase from Alcaligenes faecalis. Conrads, T., Hemann, C., George, G.N., Pickering, I.J., Prince, R.C., Hille, R. J. Am. Chem. Soc. (2002) [Pubmed]
  17. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. Weidner, U., Geier, S., Ptock, A., Friedrich, T., Leif, H., Weiss, H. J. Mol. Biol. (1993) [Pubmed]
  18. Nucleotide sequence analysis of four genes, hupC, hupD, hupF and hupG, downstream of the hydrogenase structural genes in Bradyrhizobium japonicum. Van Soom, C., Browaeys, J., Verreth, C., Vanderleyden, J. J. Mol. Biol. (1993) [Pubmed]
  19. Calcium-dependent and -independent tumoricidal activities of polymorphonuclear leukocytes induced by a linear beta-1,3-D-glucan and phorbol myristate acetate in mice. Morikawa, K., Noguchi, T., Yamazaki, M., Mizuno, D. Cancer Res. (1986) [Pubmed]
  20. Purification of a bacterial organophosphate-hydrolysing phosphatase by Cibacron 3GA-Sepharose affinity chromatography. Pai, S.B. Biochem. Biophys. Res. Commun. (1983) [Pubmed]
  21. Indirect detection of anti-acetylcholinesterase compounds in microcolumn liquid chromatography using packed bed reactor with immobilized human red blood cell acetylcholinesterase and choline oxidase. Salamoun, J., Remien, J. Journal of pharmaceutical and biomedical analysis. (1992) [Pubmed]
  22. Comparative study of antitumor activity and immunomodulatory effect of tetrahydro-2-furanyl and tetrahydro-2-pyranyl (1 leads to 3)-beta-D-glucans. Uchida, H., Sasaki, T. J. Pharmacobio-dyn. (1983) [Pubmed]
  23. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Reyes, F., Roldán, M.D., Klipp, W., Castillo, F., Moreno-Vivián, C. Mol. Microbiol. (1996) [Pubmed]
  24. Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. Streber, W.R., Timmis, K.N., Zenk, M.H. J. Bacteriol. (1987) [Pubmed]
  25. Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. Matrubutham, U., Harker, A.R. J. Bacteriol. (1994) [Pubmed]
  26. Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product. Thiemermann, S., Dernedde, J., Bernhard, M., Schroeder, W., Massanz, C., Friedrich, B. J. Bacteriol. (1996) [Pubmed]
  27. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. Nies, D.H. J. Bacteriol. (1992) [Pubmed]
  28. Sequence analysis of the Alcaligenes eutrophus chromosomally encoded ribulose bisphosphate carboxylase large and small subunit genes and their gene products. Andersen, K., Caton, J. J. Bacteriol. (1987) [Pubmed]
  29. Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. Verhaert, R.M., Riemens, A.M., van der Laan, J.M., van Duin, J., Quax, W.J. Appl. Environ. Microbiol. (1997) [Pubmed]
  30. Met144Ala mutation of the copper-containing nitrite reductase from Alcaligenes xylosoxidans reverses the intramolecular electron transfer. Farver, O., Eady, R.R., Sawers, G., Prudêncio, M., Pecht, I. FEBS Lett. (2004) [Pubmed]
  31. Development of a novel bioreactor system for treatment of gaseous benzene. Yeom, S.H., Daugulis, A.J. Biotechnol. Bioeng. (2001) [Pubmed]
  32. Further studies on the quaternary structure of D-ribulose-1, 5-bisphosphate carboxylase from Alcaligenes eutrophus. Bowien, B., Mayer, F. Eur. J. Biochem. (1978) [Pubmed]
WikiGenes - Universities