The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Geniculate Bodies

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Geniculate Bodies


High impact information on Geniculate Bodies


Biological context of Geniculate Bodies


Anatomical context of Geniculate Bodies


Associations of Geniculate Bodies with chemical compounds


Gene context of Geniculate Bodies


Analytical, diagnostic and therapeutic context of Geniculate Bodies


  1. Kainic acid microinjection into a unilateral occipital cortex or lateral geniculate body in unanesthetized cats: models of generalized epilepsy and photic epilepsy. Fujita, T., Tanaka, T., Tanaka, S., Yonemasu, Y. Jpn. J. Psychiatry Neurol. (1991) [Pubmed]
  2. Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. Bondy, C., Lee, W.H. J. Neurosci. (1993) [Pubmed]
  3. The acute effects of reserpine and NSD-1015 on the brain serotonin synthesis rate measured by an autoradiographic method. Mück-Seler, D., Diksic, M. Neuropsychopharmacology (1995) [Pubmed]
  4. Topography of corticothalamic projections from the auditory cortex of the rat. Hazama, M., Kimura, A., Donishi, T., Sakoda, T., Tamai, Y. Neuroscience (2004) [Pubmed]
  5. Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Miller, L.M., Escabí, M.A., Read, H.L., Schreiner, C.E. J. Neurophysiol. (2002) [Pubmed]
  6. GABAergic organization of the cat medial geniculate body. Huang, C.L., Larue, D.T., Winer, J.A. J. Comp. Neurol. (1999) [Pubmed]
  7. NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Li, X.F., Phillips, R., LeDoux, J.E. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1995) [Pubmed]
  8. Systematic expression of immediate early genes and intensive astrocyte activation induced by intrastriatal ferrous iron injection. Hironishi, M., Ueyama, E., Senba, E. Brain Res. (1999) [Pubmed]
  9. Chemical divisions in the medial geniculate body and surrounding paralaminar nuclei of the rat: quantitative comparison of cell density, NADPH diaphorase, acetyl cholin esterase and basal expression of c-fos. Olucha-Bordonau, F.E., Pérez-Villalba, A., Teruel-Martí, V., Ruiz-Torner, A. J. Chem. Neuroanat. (2004) [Pubmed]
  10. Dorsal raphe serotoninergic branching neurons projecting both to the lateral geniculate body and superior colliculus: a combined retrograde tracing-immunohistochemical study in the rat. Villar, M.J., Vitale, M.L., Hökfelt, T., Verhofstad, A.A. J. Comp. Neurol. (1988) [Pubmed]
  11. Unidirectional axonal transport in in vitro adult rat brain explants. Senatorov, V.V., Hu, B. Neuroscience (1998) [Pubmed]
  12. Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli. Zettel, M.L., Carr, C.E., O'Neill, W.E. J. Comp. Neurol. (1991) [Pubmed]
  13. The significance of precisely replicating patterns in mammalian CNS spike trains. Lestienne, R., Tuckwell, H.C. Neuroscience (1998) [Pubmed]
  14. Origin and organization of brainstem catecholamine innervation in the rat. Levitt, P., Moore, R.Y. J. Comp. Neurol. (1979) [Pubmed]
  15. Presumptive gamma-aminobutyric acid pathways from the midbrain to the superior colliculus studied by a combined horseradish peroxidase-gamma-aminobutyric acid transaminase pharmacohistochemical method. Araki, M., McGeer, P.L., McGeer, E.G. Neuroscience (1984) [Pubmed]
  16. A new experimental model for drug studies: effects of phenobarbital and phenytoin on photosensitivity in the lateral geniculate-kindled cat. Wada, Y., Okuda, H., Yoshida, K., Hasegawa, H., Jibiki, I., Kido, H., Yamaguchi, N. Epilepsia (1987) [Pubmed]
  17. Anticonvulsive and neuroprotective actions of a potent agonist (DCG-IV) for group II metabotropic glutamate receptors against intraventricular kainate in the rat. Miyamoto, M., Ishida, M., Shinozaki, H. Neuroscience (1997) [Pubmed]
  18. Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers. Bronchti, G., Heil, P., Scheich, H., Wollberg, Z. J. Comp. Neurol. (1989) [Pubmed]
  19. The effect of diazepam on nystagmus induced by stimulation of the lateral geniculate body in the rabbit. Ishikawa, M., Kudo, Y., Fukuda, H. Neuropharmacology (1981) [Pubmed]
  20. Cholecystokinin affects the neuronal discharge mode in the rat lateral geniculate body. Davidowa, H., Albrecht, D., Gabriel, H.J., Zippel, U. Brain Res. Bull. (1995) [Pubmed]
  21. Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Fukuhara, C., Brewer, J.M., Dirden, J.C., Bittman, E.L., Tosini, G., Harrington, M.E. Neurosci. Lett. (2001) [Pubmed]
  22. Estrogen receptor beta and progesterone receptor mRNA in the intergeniculate leaflet of the female rat. Horvath, T.L., Diano, S., Sakamoto, H., Shughrue, P.J., Merchenthaler, I. Brain Res. (1999) [Pubmed]
  23. Neuronal damage and calcium accumulation following repeated brief cerebral ischemia in the gerbil. Araki, T., Kato, H., Kogure, K. Brain Res. (1990) [Pubmed]
  24. The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Münkle, M.C., Waldvogel, H.J., Faull, R.L. J. Chem. Neuroanat. (2000) [Pubmed]
  25. Neocortical grafts receive functional afferents from the same neurons of the thalamus which have innervated the visual cortex replaced by the graft in adult rats. Girman, S.V. Neuroscience (1994) [Pubmed]
  26. Effects of the eye enucleation on the activity of monoamine oxidase and acetylcholinesterase in the superior colliculus of the rat. Urano, A. Cell Tissue Res. (1977) [Pubmed]
  27. Transition from developing to mature patterns of acetylcholinesterase activity in rat visual cortex: implications for the time-course of geniculocortical development. Hanes, M.A., Robertson, R.T., Yu, J. Brain Res. Dev. Brain Res. (1992) [Pubmed]
WikiGenes - Universities