The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II).

Quercetin, one of flavonoids, has been reported to be carcinogenic. There have been no report concerning carcinogenicity of kaempferol and luteolin which have structure similar to quercetin. DNA damage was examined by using DNA fragments obtained from the human p53 tumor suppressor gene. Quercetin induced extensive DNA damage via reacting with Cu(II), but kaempferol and luteolin induced little DNA damage even in the presence of Cu(II). Excessive quercetin inhibited copper-dependent DNA damage induced by quercetin. Bathocuproine, a Cu(I)-specific chelator, catalase and methional inhibited the DNA damage by quercetin, whereas free hydroxyl radical scavengers did not. Site specificity of the DNA damage was thymine and cytosine residues. The site specificity and the inhibitory effects suggested that DNA-copper-oxygen complex rather than free hydroxyl radical induced the DNA damage. Formation of 8-oxodG by quercetin increased extensively in the presence of Cu(II), whereas 8-oxodG formation by kaempferol or luteolin increased only slightly. This study suggests a good relationship between carcinogenicity and oxidative DNA damage of three flavonoids. The mechanism of DNA damage by quercetin was discussed in relation to the safety in cancer chemoprevention by flavonoids.[1]

References

  1. Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Yamashita, N., Tanemura, H., Kawanishi, S. Mutat. Res. (1999) [Pubmed]
 
WikiGenes - Universities