The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dose dependent protection by lipoic acid against cisplatin-induced ototoxicity in rats: antioxidant defense system.

This study investigated the alterations that occur in auditory brainstem-evoked responses (ABRs) concurrent with changes in cochlear concentrations of glutathione (GSH), lipid peroxidation, and antioxidant enzyme activity in cisplatin-induced ototoxicity and in dose-dependent otoprotection by an antioxidant lipoate. Male Wistar rats were divided into different groups and were treated as follows, with: (1) vehicle (saline) control; (2) cisplatin (16 mg/kg, i.p.); (3) lipoate (100 mg/kg, i.p.) plus saline; (4) cisplatin plus lipoate (25 mg/kg); (5) cisplatin plus lipoate (50 mg/kg), and (6) cisplatin plus lipoate (100 mg/kg). Post-treatment ABRs were evaluated after three days, the rats were sacrificed, and cochleae were harvested and analyzed. The cisplatin-injected rats showed ABR threshold elevations above the pre-treatment thresholds. Rats treated with lipoate plus cisplatin did not show significant elevation of hearing thresholds. Cisplatin administration resulted in a depletion of cochlear GSH concentration (69% of control), whereas, cisplatin-plus-lipoate treatment increased GSH concentration close to control value. Cisplatin-treated rats showed a decrease in cochlear superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activities (57, 78, 59, and 58% of control, respectively), and an increase in malondialdehyde (MDA) concentration (196% of control). Cochlear SOD, CAT, GSH-Px, and GR activities and MDA concentrations were restored in the rats injected with cisplatin plus graded doses of lipoate than those with cisplatin alone. It is concluded that cisplatin-induced ototoxicity is related to impairment of the cochlear antioxidant defense system, and the dose-dependent otoprotection conferred by an antioxidant lipoate against cisplatin ototoxicity is associated with sparing of the cochlear antioxidant defense system.[1]

References

 
WikiGenes - Universities