The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A cell-free assay for glycosylphosphatidylinositol anchoring in African trypanosomes. Demonstration of a transamidation reaction mechanism.

We established an in vitro assay for the addition of glycosyl-phosphatidylinositol (GPI) anchors to proteins using procyclic trypanosomes engineered to express GPI-anchored variant surface glycoprotein (VSG). The assay is based on the premise that small nucleophiles, such as hydrazine, can substitute for the GPI moiety and effect displacement of the membrane anchor of a GPI-anchored protein or pro-protein causing release of the protein into the aqueous medium. Cell membranes containing pulse-radiolabeled VSG were incubated with hydrazine, and the VSG released from the membranes was measured by carbonate extraction, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis/fluorography. Release of VSG was time- and temperature-dependent, was stimulated by hydrazine, and occurred only for VSG molecules situated in early compartments of the secretory pathway. No nucleophile-induced VSG release was seen in membranes prepared from cells expressing a VSG variant with a conventional transmembrane anchor (i.e. a nonfunctional GPI signal sequence). Pro-VSG was shown to be a substrate in the reaction by assaying membranes prepared from cells treated with mannosamine, a GPI biosynthesis inhibitor. When a biotinylated derivative of hydrazine was used instead of hydrazine, the released VSG could be precipitated with streptavidin-agarose, indicating that the biotin moiety was covalently incorporated into the protein. Hydrazine was shown to block the C terminus of the released VSG hydrazide because the released material, unlike a truncated form of VSG lacking a GPI signal sequence, was not susceptible to proteolysis by carboxypeptidases. These results firmly establish that the released material in our assay is VSG hydrazide and strengthen the proof that GPI anchoring proceeds via a transamidation reaction mechanism. The reaction could be inhibited with sulfhydryl alkylating reagents, suggesting that the transamidase enzyme contains a functionally important sulfhydryl residue.[1]

References

 
WikiGenes - Universities