The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Hyperresponsiveness to palatable and aversive taste stimuli in genetically obese (bombesin receptor subtype-3-deficient) mice.

Taste preference in obese mice was examined using genetically obese (bombesin receptor subtype-3: BRS-3 deficient) animals. Preference for either sodium saccharin (0.2%). sodium chloride (0.9%), citric acid (0.1%), or quinine sulfate (0.002%) solution was examined using a two-bottle test situation, and BRS-3 deficient mice not only showed a stronger preference for saccharin solution, but also a stronger aversive response to quinine solution, relative to wild-type littermates. Furthermore, a conditioned taste-aversion test measured the consumption of sodium saccharin (0.2%) and sodium chloride (0.9%) solutions after intraperitoneal injection of LiCl (0.3 M, 1 mg/kg), and BRS-3-deficient mice exhibited stronger aversion to both solutions than did control animals. In situ hybridization demonstrated that the BRS-3 gene is expressed in the parabrachial nucleus, the medial and central nuclei of the amygdala, and the hypothalamic nuclei such as paraventricular nucleus, all of which are known to be involved in taste perception. These results suggest that expression of the BRS-3 gene in these nuclei is important for the modulation of taste preference, as well as the development of obesity.[1]

References

  1. Hyperresponsiveness to palatable and aversive taste stimuli in genetically obese (bombesin receptor subtype-3-deficient) mice. Yamada, K., Wada, E., Imaki, J., Ohki-Hamazaki, H., Wada, K. Physiol. Behav. (1999) [Pubmed]
 
WikiGenes - Universities