The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Intracellular mechanisms involved in dopamine-induced actin cytoskeleton organization and maintenance of a round phenotype in cultured rat lactotrope cells.

The participation of the actin cytoskeleton in the control of PRL secretion by dopamine (DA) is not yet fully understood. Recently, we demonstrated that DA induces cortical actin assembly and stabilization in anterior pituitary PRL-secreting cells (lactotropes) that can be linked to DA-induced inhibition of PRL secretion. Here we show that DA prevents cell flattening and the formation of cytoplasmic actin cables in cultured rat lactotropes. The effects of DA were reversible, mediated by D2 receptors, exclusive to lactotropes, and independent of other anterior pituitary cells present in the cultures. Because cAMP and Ca2+ mediate DA-induced inhibition of PRL secretion and synthesis, we investigated whether morphological responses to DA were dependent on these second messengers. Either inhibition of protein kinase A activity with the specific inhibitor KT5720 or blockade of Ca2+ channels with nifedipine inhibited cell flattening and induced cytoplasmic actin filament breakdown. Nifedipine was as effective as DA, but KT5720 was less effective than DA. Increased intracellular cAMP levels provoked cell flattening, which was blocked by nifedipine and KT5720, but not by DA. The results suggest that Ca2+-dependent pathways control cell shape in most lactotropes; however, in a subpopulation of lactotropes, cAMP-dependent pathways may also contribute to DA morphological responses. Next, we studied the participation of the Rho family of guanosine triphosphatases, which is known to regulate the dynamics of actin filaments. Inactivation of Rho by C3 exoenzyme induced cytoplasmic actin cable disassembly and lactotrope rounding up. No additive effects were observed among Rho-, cAMP-, and Ca2+-dependent pathways. However, C3-induced morphological responses were blocked by increased cAMP levels, suggesting that Rho-dependent steps are upstream cAMP-dependent steps. DA-induced actin cytoskeleton reorganization in lactotropes may involve modifications in the expression and localization of actin-binding proteins. DA increased expression of the actin anchoring proteins talin and alpha-actinin, but not of vinculin. DA enhanced association of talin to cell membranes. Increased talin-membrane interaction may be implicated in DA-induced maintenance of a round phenotype in lactotrope cells.[1]

References

 
WikiGenes - Universities