The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rescue of high expression beta-tropomyosin transgenic mice by 5-propyl-2-thiouracil. Regulating the alpha-myosin heavy chain promoter.

Tropomyosin is an essential component of the sarcomeric thin filament in striated muscle that participates in the regulation of muscle contraction through Ca(2+)-mediated activation. The two predominant tropomyosin isoforms expressed in striated muscle are alpha- and beta-tropomyosin, which exhibit an 86% amino acid identity between themselves. Previous studies by our laboratory utilized a transgenic mouse system to overexpress beta-tropomyosin in the heart to address the functional differences between these two tropomyosin isoforms. Interestingly, when a high percentage of beta-tropomyosin replaces alpha-tropomyosin in the hearts of transgenic mice, the mice die due to severe cardiac abnormalities. In this study, we have rescued these high expression beta-tropomyosin mice by turning off the alpha-myosin heavy chain promoter, which is driving the beta-tropomyosin transgene. This down-regulation of the alpha-myosin heavy chain promoter was accomplished by the administration of 5-propyl-2-thiouracil, which disrupts thyroid hormone synthesis and inhibits promoter activity through thyroid regulatory elements located in the 5'-flanking region of the promoter. Results show that as beta-tropomyosin expression is down-regulated, alpha-tropomyosin expression is increased. Also, alpha- and beta-myosin heavy chain expression is modified in response to the changes in thyroid hormone expression. Morphological analysis of these rescued mice show a moderate pathological phenotype, characterized by atrial myocytolysis; echocardiographic analyses demonstrate altered ventricular functions, such as peak filling rates and left ventricular fractional shortening. This is the first report demonstrating that transcriptional regulatory elements located within the alpha-myosin heavy chain promoter can be manipulated to rescue potentially lethal phenotypes, such as high expression beta-tropomyosin transgenic mice.[1]

References

 
WikiGenes - Universities