The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Lithium at 50: have the neuroprotective effects of this unique cation been overlooked?

Recent advances in cellular and molecular biology have resulted in the identification of two novel, hitherto completely unexpected targets of lithium's actions, discoveries that may have a major impact on the future use of this unique cation in biology and medicine. Chronic lithium treatment has been demonstrated to markedly increase the levels of the major neuroprotective protein, bcl-2 in rat frontal cortex, hippocampus, and striatum. Similar lithium-induced increases in bcl-2 are also observed in cells of human neuronal origin, and are observed in rat frontal cortex at lithium levels as low as approximately 0.3 mmol/L. Bcl-2 is widely regarded as a major neuroprotective protein, and genetic strategies that increase bcl-2 levels have demonstrated not only robust protection of neurons against diverse insults, but have also demonstrated an increase the regeneration of mammalian CNS axons. Lithium has also been demonstrated to inhibit glycogen synthase kinase 3 beta ( GSK-3 beta), an enzyme known to regulate the levels of phosphorylated tau and beta-catenin (both of which may play a role in the neurodegeneration observed in Alzheimer's disease). Consistent with the increases in bcl-2 levels and inhibition of GSK-3 beta, lithium has been demonstrated to exert robust protective effects against diverse insults both in vitro and in vivo. These findings suggest that lithium may exert some of its long term beneficial effects in the treatment of mood disorders via underappreciated neuroprotective effects. To date, lithium remains the only medication demonstrated to markedly increase bcl-2 levels in several brain areas; in the absence of other adequate treatments, the potential efficacy of lithium in the long term treatment of certain neurodegenerative disorders may be warranted.[1]

References

  1. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Manji, H.K., Moore, G.J., Chen, G. Biol. Psychiatry (1999) [Pubmed]
 
WikiGenes - Universities