The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Kinin B2 receptors mediate blockade of atrial natriuretic peptide natriuresis induced by glucose or feeding in fasted rats.

We have shown previously that the kininogen-derived peptides bradykinin, prokinins, and PU-D1, given intravenously or into the duodenal lumen, block the atrial natriuretic peptide (ANP)-induced diuretic-natriuretic effect in fasting, anesthetized rats infused with isotonic glucose. HOE-140, an inhibitor of bradykinin B2 receptors, completely suppresses this ANP blockade. When intravenous glucose infusion is omitted, the above-described inhibition of ANP does not take place. Therefore, to clarify the role of glucose and/or feeding in this phenomenon, we used fasted, anesthetized rats to test how the ANP excretory response was affected by (1) short-term feeding before anesthesia, (2) 1 mL of isotonic glucose introduced into the stomach, and (3) the interaction of HOE-140 with these treatments. In addition, we tested the effects of 1 mL of intragastric glucose administration and HOE-140 on urinary excretion in awake rats. In anesthetized rats, both glucose administration and feeding significantly inhibited the diuretic-natriuretic effect of ANP for up to 90 minutes. Similarly, intragastric glucose delayed spontaneous sodium and water excretion for 90 minutes in awake rats. In all 3 cases, pretreatment with HOE-140 (2.5 microg IV) fully prevented the inhibition of ANP excretory action, ruling out osmotic effects as the cause of reduced diuresis. These results indicate that the presence of glucose in the digestive tract triggers an inhibitory effect on ANP renal actions that requires activation of kinin B2 receptors, providing strong support to our hypothesis that during the early prandial period, gastrointestinal signals elicit a transient blockade of renal excretion with a mechanism involving the kallikrein-kinin system.[1]

References

 
WikiGenes - Universities