The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Ag+ alters cell growth, neurite extension, cardiomyocyte beating, and fertilized egg constriction.

BACKGROUND: The Russian Space Agency uses electrochemically generated silver ions (Ag+) to purify drinking water for their space station, Mir, and their portion of the International Space Station. U.S. EPA guidelines allow 10.6 micromol x L(-1) Ag+ in human drinking water for up to 10 d. Studies correlate Ag+ exposure with tissue dysfunction in humans, rats, and mice, and with altered ion transport, skeletal muscle contraction, and embryonic cell constriction in other animal cells. Ag+ effects on cell shape change-related functions have not been assessed. METHODS: Immortalized embryonic human intestinal epithelial cells, freshly explanted embryonic avian nerve cells and cardiomyocytes, and marine fertilized eggs were grown in vitro in medium containing AgNO3. RESULTS: Intestinal cells detach from the substratum and viable cell number decreases by 5-6 d at 5 micromol x L(-1) AgNO3, and faster at higher concentrations. Microtubules appear unaltered in adherent cells. Detached cells are nonviable. Neurite outgrowth and glial cell migration from dorsal root ganglia are inhibited by 3 d at 15 micromol x L(-1) AgNO3 or greater. Contractions stop temporarily in most cardiomyocytes by 5 min at 5 micromol x L(-1) AgNO3 or more, but some cardiomyocytes beat 3 times faster than normal at 7.5-20 micromol x L(-1) AgNO3. Picomolar Ag+ increases marine egg polar lobe constriction within an hour, even in the absence of microtubules. CONCLUSION: Ag+ alters animal cell growth and shape changes by a MT-independent mechanism. This is the first report of Ag+ effects on vertebrate neurite outgrowth, glial cell migration, or cardiomyocyte beat rate.[1]


  1. Ag+ alters cell growth, neurite extension, cardiomyocyte beating, and fertilized egg constriction. Conrad, A.H., Tramp, C.R., Long, C.J., Wells, D.C., Paulsen, A.Q., Conrad, G.W. Aviation, space, and environmental medicine. (1999) [Pubmed]
WikiGenes - Universities