Muscle-specific transcriptional regulation of the slowpoke Ca(2+)-activated K(+) channel gene.
Transcriptional regulation of the Drosophila slowpoke calcium-activated potassium channel gene is complex. To date, five transcriptional promoters have been identified, which are responsible for slowpoke expression in neurons, midgut cells, tracheal cells, and muscle fibers. The slowpoke promoter called Promoter C2 is active in muscles and tracheal cells. To identify sequences that activate Promoter C2 in specific cell types, we introduced small deletions into the slowpoke transcriptional control region. Using transformed flies, we asked how these deletions affected the in situ tissue-specific pattern of expression. Sequence comparisons between evolutionarily divergent species helped guide the placement of these deletions. A section of DNA important for expression in all cell types was subdivided and reintroduced into the mutated control region, a piece at a time, to identify which portion was required for promoter activity. We identified 55-, 214-, and 20-nucleotide sequences that control promoter activity. Different combinations of these elements activate the promoter in adult muscle, larval muscle, and tracheal cells.[1]References
- Muscle-specific transcriptional regulation of the slowpoke Ca(2+)-activated K(+) channel gene. Chang, W.M., Bohm, R.A., Strauss, J.C., Kwan, T., Thomas, T., Cowmeadow, R.B., Atkinson, N.S. J. Biol. Chem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









