The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Roles of endogenous prostaglandins and nitric oxide in gastroduodenal ulcerogenic responses induced in rats by hypothermic stress.

We examined the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the gastroduodenal ulcerogenic responses to hypothermic stress (28 approximately 30 degrees C) in anesthetized rats. Lowering body temperature provoked damage in the gastroduodenal mucosa, with an increase of gastric acid secretion and motility. These responses were completely abolished by bilateral vagotomy or atropine, while 16,16-dimethyl PGE2 decreased the mucosal ulcerogenic response with no effect on acid secretion. The non-selective COX inhibitors, indomethacin or aspirin, worsened these lesions with enhancement of gastric motility and no effect on acid secretion, while the selective COX-2 inhibitor NS-398 did not affect any of these responses. On the other hand, the non-selective NOS inhibitor L-NAME but not aminoguanidine (a relatively selective inhibitor of iNOS), significantly potentiated the acid secretory and mucosal ulcerogenic responses in the stomach but reduced the duodenal damage in response to hypothermia, the effects being antagonized by co-administration of L-arginine. Hypothermia itself decreased duodenal HCO3- secretion under both basal and mucosal acidification-stimulated conditions. Both indomethacin and aspirin further decreased the HCO3- response to the mucosal acidification, while L-NAME significantly increased the HCO3- secretion even under hypothermic conditions, similar to 16,16-dimethyl PGE2. These results suggest that 1) hypothermic stress caused an increase of acid secretion and motility as well as a decrease of duodenal HCO3-secretion, resulting in damage in both the stomach and duodenum, 2) the COX-1 but not COX-2 inhibition worsened these lesions by enhancing gastric motility and further decreasing duodenal HCO3- response, 3) the cNOS but not iNOS inhibition worsened gastric lesions by increasing acid secretion but decreased duodenal damage by increasing HCO3- secretion. Thus, it is assumed that the gastroduodenal ulcerogenic and functional responses to hypothermic stress are modified by cNOS/NO as well as COX-1/PGs.[1]

References

  1. Roles of endogenous prostaglandins and nitric oxide in gastroduodenal ulcerogenic responses induced in rats by hypothermic stress. Takeuchi, K., Suzuki, K., Araki, H., Mizoguchi, H., Sugamoto, S., Umdeda, M. J. Physiol. Paris (1999) [Pubmed]
 
WikiGenes - Universities