The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L.

NO(3)(-) is present at micromolar concentrations in seawater and must be absorbed by marine plants against a steep electrochemical potential difference across the plasma membrane. We studied NO(3)(-) transport in the marine angiosperm Zostera marina L. to address the question of how NO(3)(-) uptake is energized. Electrophysiological studies demonstrated that micromolar concentrations of NO(3)(-) induced depolarizations of the plasma membrane of leaf cells. Depolarizations showed saturation kinetics (K(m) = 2.31 +/- 0.78 microM NO(3)(-)) and were enhanced in alkaline conditions. The addition of NO(3)(-) did not affect the membrane potential in the absence of Na(+), but depolarizations were restored when Na(+) was resupplied. NO(3)(-)-induced depolarizations at increasing Na(+) concentrations showed saturation kinetics (K(m) = 0.72 +/- 0.18 mM Na(+)). Monensin, an ionophore that dissipates the Na(+) electrochemical potential, inhibited NO(3)(-)-evoked depolarizations by 85%, and NO(3)(-) uptake (measured by depletion from the external medium) was stimulated by Na(+) ions and by light. Our results strongly suggest that NO(3)(-) uptake in Z. marina is mediated by a high-affinity Na(+)-symport system, which is described here (for the first time to our knowledge) in an angiosperm. Coupling the uptake of NO(3)(-) to that of Na(+) enables the steep inwardly-directed electrochemical potential for Na(+) to drive net accumulation of NO(3)(-) within leaf cells.[1]

References

  1. Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. García-Sánchez, M.J., Jaime, M.P., Ramos, A., Sanders, D., Fernández, J.A. Plant Physiol. (2000) [Pubmed]
 
WikiGenes - Universities