The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons.

Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs, which express a K+ current with pH- and voltage-dependent properties virtually identical to those of the cloned channel. This pH-sensitive K+ channel was fully inhibited by serotonin, norepinephrine, substance P, thyrotropin-releasing hormone, and 3,5-dihydroxyphenylglycine, a group I metabotropic glutamate receptor agonist. The neurotransmitter effect was entirely reconstituted in HEK 293 cells coexpressing TASK-1 and the TRH-R1 receptor. Given its expression patterns and the widespread prevalence of this neuromodulatory mechanism, TASK-1 also likely supports this action in other CNS neurons.[1]


  1. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Talley, E.M., Lei, Q., Sirois, J.E., Bayliss, D.A. Neuron (2000) [Pubmed]
WikiGenes - Universities