The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association.

N-Linked glycosylation is a post-translational modification occurring in many eukaryotic secreted and surface-bound proteins and has impact on diverse physiological and pathological processes. Similarly important is the generation of glycosylphosphatidylinositol linkers, which anchor membrane proteins to the cell. Both protein modifications depend on the central nucleotide sugar UDP-N-acetylglucosamine (UDP-GlcNAc). The enzymatic reactions leading to generation of nucleotide sugars are established, yet most of the respective genes still await cloning. We describe the characterization of such a gene, EMeg32, which we identified based on its differential expression in murine hematopoietic precursor cells. We further demonstrate regulated expression during embryogenesis. EMeg32 codes for a 184-amino acid protein exhibiting glucosamine-6-phosphate acetyltransferase activity. It thereby holds a key position in the pathway toward de novo UDP-GlcNAc synthesis. Surprisingly, the protein associates with the cytoplasmic side of various intracellular membranes, accumulates prior to mitosis, and copurifies with the cdc48 homolog p97/valosin-containing protein.[1]

References

  1. Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association. Boehmelt, G., Fialka, I., Brothers, G., McGinley, M.D., Patterson, S.D., Mo, R., Hui, C.C., Chung, S., Huber, L.A., Mak, T.W., Iscove, N.N. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities