The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2.

We recently identified BNIP-2, a previously cloned Bcl-2- and E1B-associated protein, as a putative substrate of the FGF receptor tyrosine kinase and showed that it possesses GTPase- activating activity toward Cdc42 despite the lack of homology to previously described catalytic domains of GTPase-activating proteins (GAPs). BNIP-2 contains many arginine residues at the carboxyl terminus, which includes the region of homology to the noncatalytic domain of Cdc42GAP, termed BNIP-2 and Cdc42GAP homology ( BCH) domain. Using BNIP-2 glutathione S-transferase recombinants, it was found that its BCH bound Cdc42, and contributed the GAP activity. This domain was predicted to fold into alpha-helical bundles similar to the topology of the catalytic GAP domain of Cdc42GAP. Alignment of exposed arginine residues in this domain helped to identify Arg-235 and Arg-238 as good candidates for catalysis. Arg-238 matched well to the arginine "finger" required for enhanced GTP hydrolysis in homodimerized Cdc42. Site-directed mutagenesis confirmed that an R235K or R238K mutation severely impaired the BNIP-2 GAP activity without affecting its binding to Cdc42. From deletion studies, a region adjacent to the arginine patch ((288)EYV(290) on BNIP-2) and the Switch I and Rho family-specific "Insert" region on Cdc42 are involved in the binding. The results indicate that the BCH domain of BNIP-2 represents a novel GAP domain that employs an arginine patch motif similar to that of the Cdc42-homodimer.[1]

References

  1. Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2. Low, B.C., Seow, K.T., Guy, G.R. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities