The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Quantitating silver-stained neurodegeneration: the neurotoxicity of trimethlytin (TMT) in aged rats.

This report describes the development of a histoanalytical procedure to measure the degree of neurodegeneration produced by the organometal toxicant trimethyltin (TMT). Based on a previous, non-quantitated experiment we hypothesized that the same dose of TMT would produce greater damage in animals of increasing age. Male rats aged 6, 12, 18, or 24 months at the time of dosing were given either 4.5 mg/kg TMT or saline (i.p.). One month after dosing, rats were perfused and their brains removed and processed to selectively silver-impregnate degenerating cell bodies as well as axon terminals and dendrites. Neurodegeneration was most prominent in the hippocampi (especially CA1 stratum radiatum) of TMT-treated rats, but not in the controls. Computer-assisted counting of the silver grains marking damage indicated greater neurotoxicity from the same dose of TMT when given to the older animals. Thus the grain density in the 6-month-old TMT-treated rats was not significantly elevated from the 6-month-old controls (P>0.10). The 12-month-old TMT-treated rats had significantly increased grain densities compared to their controls (P<0.05), but still larger increases of grain counts were observed in the 18- and 24-month-old rats (both P-values<0.01). Our findings with TMT are similar to previous, but nonquantitative, reports that the neurotoxic effects of kainic acid and methionine sulfoximine were also greater in older rats. An increased sensitivity to neurotoxicants might help explain the apparently spontaneous degeneration of cortical neurons in aging and in the neurological diseases of old age. The method we report here for quantitation of silver grains marking neurodegeneration should be adaptable to a wide range of histologically-based neurotoxicology investigations.[1]

References

  1. Quantitating silver-stained neurodegeneration: the neurotoxicity of trimethlytin (TMT) in aged rats. Scallet, A.C., Pothuluri, N., Rountree, R.L., Matthews, J.C. J. Neurosci. Methods (2000) [Pubmed]
 
WikiGenes - Universities