The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure-function study of the extracellular domain of the human type I interferon receptor (IFNAR)-1 subunit.

Despite accumulating information about the different effector molecules and signaling cascades that are invoked on interferon-alpha (IFN-alpha) binding to the type 1 IFN receptor, little is known about the specifics of the binding interactions between the ligand and the receptor complex. The IFN-alpha/beta receptor (IFNAR)-2 subunit of the IFN receptor is considered the primary binding chain of the receptor, yet it is clear that both receptor subunits, IFNAR-1 and IFNAR-2, cooperate in the high-affinity binding of IFN to the receptor complex. Earlier results from our laboratory suggested that an association of IFNAR-1 with membrane Galalpha1-4Gal-containing glycolipids facilitates receptor-mediated signaling. The data implicated amino acid residues in the SD100 domain of IFNAR-1 in the glycosphingolipid (GSL) modification of the type 1 IFN receptor. Interestingly, the human and murine counterparts of IFNAR-1 exhibit remarkable species specificity despite their considerable amino acid sequence identity. Certainly, those amino acid residues that effect GSL modification of IFNAR-1 are conserved between species, yet specific regions of IFNAR-1 that confer species specificity have not been defined. To delineate further the role of the IFNAR-1 SD100A domain in receptor function, a chimeric cDNA was assembled, in which the SD100A domain of the murine IFNAR-1 chain was replaced with the human sequence. This construct was expressed in IFNAR-1-/- mouse embryonic fibroblasts, and stable transfectants were established. Transfectants are fully sensitive to murine IFN-alpha4 treatment with respect to the induction of IFN-stimulated gene factor 3 ( ISGF3) and sis- inducing factor (SIF) signal transducer and activator of transcription factor ( Stat) complexes, exhibiting comparable levels of Stat activation to those observed in IFNAR-1-/- cells reconstituted with intact MuIFNAR-1. Similar results were obtained with IFN-induced antiviral and growth inhibitory responses. Viewed together, these data suggest that the SD100A domain of IFNAR-1 does not contribute to species-specific IFN binding.[1]

References

  1. Structure-function study of the extracellular domain of the human type I interferon receptor (IFNAR)-1 subunit. Kumaran, J., Colamonici, O.R., Fish, E.N. J. Interferon Cytokine Res. (2000) [Pubmed]
 
WikiGenes - Universities