The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags.

Cardiac hypertrophy is an adaptive response to chronic hemodynamic overload. We employed a whole-genome approach using expressed sequence tags (ESTs) to characterize gene transcription and identify new genes overexpressed in cardiac hypertrophy. Analysis of general transcription patterns revealed a proportional increase in transcripts related to cell/organism defense and a decrease in transcripts related to cell structure and motility in hypertrophic hearts compared to normal hearts. Detailed comparison of individual gene expression identified 64 genes potentially overexpressed in hypertrophy, of 232 candidate genes derived from a set of 77,692 cardiac ESTs, including 47,856 ESTs generated in our laboratory. Of these, 29 were good candidates (P < 0.0002) and 35 were weaker candidates (P < 0.005). RT-PCR of a number of these candidate genes demonstrated correspondence of EST-based predictions of gene expression with in vitro levels. Consistent with an organ under various stresses, up to one-half of the good candidates predicted to exhibit differential expression were genes potentially involved in stress response. Analyses of general transcription patterns and of single-gene expression levels were also suggestive of increased protein synthesis in the hypertrophic myocardium. Overall, these results depict a scenario compatible with current understanding of cardiac hypertrophy. However, the identification of several genes not previously known to exhibit increased expression in cardiac hypertrophy (e.g., prostaglandin D synthases; CD59 antigen) also suggests a number of new avenues for further investigation. These data demonstrate the utility of genome-based resources for investigating questions of cardiovascular biology and medicine.[1]

References

 
WikiGenes - Universities