The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase.

Haloalkane dehalogenase is an enzyme capable of catalyzing the conversion of short-chained (C(2)-C(8)) aliphatic halogenated hydrocarbons to a corresponding primary alcohol. Because of its broad substrate specificity for mono-, di-, and trisubstituted halogenated hydrocarbons and cofactor independence, haloalkane dehalogenases are attractive biocatalysts for gas-phase bioremediation of pollutant halogenated vapor emissions. A solid preparation of haloalkane dehalogenase from Rhodococcus rhodochrous was used to catalyze the dehalogenation reaction of 1-chlorobutane or 1,3-dichloropropane delivered in the gas phase. For optimal gas-phase dehalogenase activity, a relative humidity of 100%, a(w) = 1, was desired. With a 50% reduction in the vapor-phase hydration level, an 80% decrease in enzymatic activity was observed. The enzyme kinetics for the gas-phase substrates obeyed an Arrhenius-"like" behavior and the solid haloalkane dehalogenase preparation was more thermally stable than its water-soluble equivalent. Triethylamine was added to the gaseous reaction environment in efforts to increase the rate of reaction. A tenfold increase in the dehalogenase activity for the vapor-phase substrates was observed with the addition of triethylamine. Triethylamine altered the electrostatic environment of haloalkane dehalogenase via a basic shift in local pH, thereby minimizing the effect of the pH-reducing reaction product on enzyme activity. Both organic phase and solid-state buffers were used to confirm the activating role of the altered ionization state.[1]

References

  1. Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase. Dravis, B.C., LeJeune, K.E., Hetro, A.D., Russell, A.J. Biotechnol. Bioeng. (2000) [Pubmed]
 
WikiGenes - Universities