The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats.

In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80 degrees C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90 degrees C, and a Chloroflexus mat is formed at 65 to 70 degrees C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and one Chloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in the Chloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter(-1)) below 70 degrees C, whereas Aquificales were dominant in the high-sulfide spring (12 mg liter(-1)) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.[1]

References

  1. Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Skirnisdottir, S., Hreggvidsson, G.O., Hjörleifsdottir, S., Marteinsson, V.T., Petursdottir, S.K., Holst, O., Kristjansson, J.K. Appl. Environ. Microbiol. (2000) [Pubmed]
 
WikiGenes - Universities