The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A role for nuclear phospholipase Cbeta 1 in cell cycle control.

Phosphoinositide signaling resides in the nucleus, and among the enzymes of the cycle, phospholipase C ( PLC) appears as the key element both in Saccharomyces cerevisiae and in mammalian cells. The yeast PLC pathway produces multiple inositol polyphosphates that modulate distinct nuclear processes. The mammalian PLCbeta(1), which localizes in the nucleus, is activated in insulin-like growth factor 1-mediated mitogenesis and undergoes down-regulation during murine erythroleukemia differentiation. PLCbeta(1) exists as two polypeptides of 150 and 140 kDa generated from a single gene by alternative RNA splicing, both of them containing in the COOH-terminal tail a cluster of lysine residues responsible for nuclear localization. These clues prompted us to try to establish the critical nuclear target(s) of PLCbeta(1) subtypes in the control of cell cycle progression. The results reveal that the two subtypes of PLCbeta(1) that localize in the nucleus induce cell cycle progression in Friend erythroleukemia cells. In fact when they are overexpressed in the nucleus, cyclin D3, along with its kinase (cdk4) but not cyclin E is overexpressed even though cells are serum-starved. As a consequence of this enforced expression, retinoblastoma protein is phosphorylated and E2F-1 transcription factor is activated as well. On the whole the results reveal a direct effect of nuclear PLCbeta(1) signaling in G(1) progression by means of a specific target, i.e. cyclin D3/cdk4.[1]


  1. A role for nuclear phospholipase Cbeta 1 in cell cycle control. Faenza, I., Matteucci, A., Manzoli, L., Billi, A.M., Aluigi, M., Peruzzi, D., Vitale, M., Castorina, S., Suh, P.G., Cocco, L. J. Biol. Chem. (2000) [Pubmed]
WikiGenes - Universities