The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1.

Bcl-x(L), an antiapoptotic Bcl-2 family member, is postulated to function at multiple stages in the cell death pathway. The possibility that Bcl-x(L) inhibits cell death at a late (postmitochondrial) step in the death pathway is supported by this report of a novel apoptosis inhibitor, Aven, which binds to both Bcl-x(L) and the caspase regulator, Apaf-1. Identified in a yeast two-hybrid screen, Aven is broadly expressed and is conserved in other mammalian species. Only those mutants of Bcl-x(L)that retain their antiapoptotic activity are capable of binding Aven. Aven interferes with the ability of Apaf-1 to self-associate, suggesting that Aven impairs Apaf-1-mediated activation of caspases. Consistent with this idea, Aven inhibited the proteolytic activation of caspases in a cell-free extract and suppressed apoptosis induced by Apaf-1 plus caspase-9. Thus, Aven represents a new class of cell death regulator.[1]

References

  1. Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Chau, B.N., Cheng, E.H., Kerr, D.A., Hardwick, J.M. Mol. Cell (2000) [Pubmed]
 
WikiGenes - Universities