The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Opposite functions for E2F1 and E2F4 in human epidermal keratinocyte differentiation.

Proteins of the retinoblastoma family (pRb, p107, and p130) modulate cell proliferation, a function related to their capacity to control the activity of the E2F transcription factor family. The Rb proteins also control cell differentiation in different tissues. We have recently described their involvement in human epidermal keratinocyte differentiation (Paramio, J. M., Lain, S., Segrelles, C., Lane, E. B. , and Jorcano, J. L. (1998) Oncogene 17, 949-957). Here we show that E2F proteins are also involved in this process. We found that E2F1 and E2F4 are expressed differentially during the in vitro differentiation of human epidermal keratinocytes, with the former uniformly present throughout the process, whereas the second is predominantly expressed at the onset of differentiation. This pattern is also observed in human skin by confocal microscopy. Electrophoretic mobility shift assays and immunoprecipitation experiments demonstrated that the complexes formed by E2F1 and E2F4 and Rb family proteins vary throughout in vitro keratinocyte differentiation. In agreement with this observation, several E2F-responsive genes are differentially regulated during this process. To test the functional implications of these observations, we transfected HaCaT keratinocytes with plasmids coding for E2F1 and E2F4. Transfected cells display opposite in vitro differentiation properties. Although E2F1-transfected cells are unable to differentiate, E2F4-transfected cells show an increased differentiation rate compared with Neo-transfected control cells. Our data demonstrate that the differential and coordinated expression and interaction of E2F and Rb proteins modulate the process of epidermal differentiation and provide clear evidence that members of the E2F family of transcription factors play specific and opposite roles during cell differentiation.[1]

References

  1. Opposite functions for E2F1 and E2F4 in human epidermal keratinocyte differentiation. Paramio, J.M., Segrelles, C., Casanova, M.L., Jorcano, J.L. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities