The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DiSSiMiL: Diverse Small Size Mini-Libraries applied to simple and rapid epitope mapping of a monoclonal antibody.

Methods for screening protein-protein interactions are useful in protein science and for the generation of drug leads. We set out to develop a simplified assay to rapidly test protein-protein interactions, with a library of 400 pentapeptides comprising the 20 natural amino acids at two variable positions followed by three glycines (NH2-X1X2GGG). The library was used to identify the epitope of monoclonal antibody (mAb) 10D11 directed against the HOXD4 protein. Three pentapeptide 'hits' were selected (VYGGG, PWGGG and WKGGG) from direct binding assays screening for pentapeptide-mAb interactions; and from assays using pentapeptides in solution to competitively block HOXD4-mAb interactions. Alignment of the three 'hit' pentapeptides to the HOXD4 sequence predicts the mAb 10D11 epitope as NH2-VYPWMK. Synthesis of NH2-VYPWMK hexapeptide confirmed this prediction; and an alanine scan of HOXD4 ablated binding by mAb 10D11 when amino acids in the putative epitope were mutated. We propose that these simplified but diverse libraries can be used for rapid epitope mapping of some mAbs, and for generating lead small peptide analogs that interfere with receptor-ligand or other protein-protein interactions, or with enzymatic activity.[1]

References

  1. DiSSiMiL: Diverse Small Size Mini-Libraries applied to simple and rapid epitope mapping of a monoclonal antibody. Burgess, K., Han, I., Zhang, A., Zheng, W.H., Shanmugam, K., Featherstone, M.S., Saragovi, H.U. J. Pept. Res. (2001) [Pubmed]
 
WikiGenes - Universities