The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa.

Factor Xa (fXa) plays a critical role in the coagulation cascade, serving as the point of convergence of the intrinsic and extrinsic pathways. Together with nonenzymatic cofactor Va and Ca2+ on the phospholipid surface of platelets or endothelial cells, factor Xa forms the prothrombinase complex, which is responsible for the proteolysis of prothrombin to catalytically active thrombin. Thrombin, in turn, catalyzes the cleavage of fibrinogen to fibrin, thus initiating a process that ultimately leads to clot formation. Recently, we reported on a series of isoxazoline and isoxazole monobasic noncovalent inhibitors of factor Xa which show good potency in animal models of thrombosis. In this paper, we wish to report on the optimization of the heterocyclic core, which ultimately led to the discovery of a novel pyrazole SN429 (2b; fXa K(i) = 13 pM). We also report on our efforts to improve the oral bioavailability and pharmacokinetic profile of this series while maintaining subnanomolar potency and in vitro selectivity. This was achieved by replacing the highly basic benzamidine P1 with a less basic benzylamine moiety. Further optimization of the pyrazole core substitution and the biphenyl P4 culminated in the discovery of DPC423 (17h), a highly potent, selective, and orally active factor Xa inhibitor which was chosen for clinical development.[1]

References

  1. Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa. Pinto, D.J., Orwat, M.J., Wang, S., Fevig, J.M., Quan, M.L., Amparo, E., Cacciola, J., Rossi, K.A., Alexander, R.S., Smallwood, A.M., Luettgen, J.M., Liang, L., Aungst, B.J., Wright, M.R., Knabb, R.M., Wong, P.C., Wexler, R.R., Lam, P.Y. J. Med. Chem. (2001) [Pubmed]
 
WikiGenes - Universities