The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cytoplasmic tail motifs mediate endoplasmic reticulum localization and export of transmembrane reporters in the protozoan parasite Toxoplasma gondii.

In mammalian cells and yeasts, amino acid motifs in the cytoplasmic tails of transmembrane proteins play a prominent role in protein targeting in the early secretory pathway by mediating localization to or rapid export from the endoplasmic reticulum (ER). However, early sorting events are poorly characterized in protozoan parasites. Here, we show that a C-terminal QKTT sequence mediates the ER localization of chimeric reporter constructs consisting of bacterial alkaline phosphatase (BAP) fused to the transmembrane domain (TMD) and truncated cytoplasmic tail of the human low-density lipoprotein receptor (LDL) receptor or of murine lysosome-associated membrane protein (lamp-1) in Toxoplasma gondii. The cytoplasmic tail of human TGN46 also determines ER localization of BAP chimeras in the parasite, but this can be overcome by the addition at the C-terminus of the tail of an acidic patch, which functions as an ER export signal in conjunction with an upstream tyrosine motif. These results suggest that COPI-dependent ER retrieval and COPII-dependent export mechanisms mediated by KKXX and DXE motifs of mammalian cells are generally conserved in T. gondii. In contrast, the failure of the QKTT motif and TGN46 cytoplasmic tail to induce steady-state ER localization of vesicular stomatitis virus glycoprotein (VSVG) chimeras in HeLa and NRK cells indicates that significant differences in early secretory trafficking also exist.[1]

References

 
WikiGenes - Universities