The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Characterization of peptide substrates and viral enzyme that affect the cleavage site specificity of the human spumaretrovirus proteinase.

Oligopeptides that correspond to proteolytic cleavage site junctions of the native Gag and Pol proteins are specifically cleaved by retroviral aspartate proteases (PRs). The role of the flap subdomain of the PR of the human spumaretrovirus (HSRV) and of substrate peptides in cleavage site specificity was analyzed by site-directed mutagenesis. Native and mutant peptides were subjected to proteolysis by the authentic and mutated recombinant viral enzyme. The results reveal that Glu residue 54 of the HSRV PR is an essential specificity determinant for proteolytic processing of the structural proteins. Peptides that represent in vivo cleavage sites were susceptible to proteolysis by the recombinant HSRV PR, but one peptide located at the junction between the PR and reverse transcriptase domains was completely resistant to cleavage. Thus the data indicate that a proteolytic cleavage between these domains does not occur in vivo. Naturally occurring and mutant forms of the cleavage-resistant peptide were therefore analyzed by circular dichroism to determine if differences existed in the secondary structures of the peptides that did or did not serve as substrates. The data show that differences in the secondary structure of the native and mutant peptides analyzed does not seem to play a crucial role for cleavage site specificity in HSRV PR. Instead highly conserved hydrophobic residues at distinct positions of the HSRV cleavage site junctions contribute to the specificity observed as reported for HIV-1 PR.[1]

References

  1. Characterization of peptide substrates and viral enzyme that affect the cleavage site specificity of the human spumaretrovirus proteinase. Pfrepper, K.I., Reed, J., Rackwitz, H.R., Schnölzer, M., Flügel, R.M. Virus Genes (2001) [Pubmed]
 
WikiGenes - Universities