The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A regulatory role of the PetM subunit in a cyanobacterial cytochrome b6f complex.

To investigate the function of the PetM subunit of the cytochrome b6f complex, the petM gene encoding this subunit was inactivated by insertional mutagenesis in the cyanobacterium Synechocystis PCC 6803. Complete segregation of the mutant reveals a nonessential function of PetM for the structure and function of the cytochrome b6f complex in this organism. Photosystem I, photosystem II, and the cytochrome b6f complex still function normally in the petM- mutant as judged by cytochrome f re-reduction and oxygen evolution rates. In contrast to the wild type, however, the content of phycobilisomes and photosystem I as determined from 77 K fluorescence spectra is reduced in the petM- strain. Furthermore, whereas under anaerobic conditions the kinetics of cytochrome f re-reduction are identical, under aerobic conditions these kinetics are slower in the petM- strain. Fluorescence induction measurements indicate that this is due to an increased plastoquinol oxidase activity in the mutant, causing the plastoquinone pool to be in a more oxidized state under aerobic dark conditions. The finding that the activity of the cytochrome b6f complex itself is unchanged, whereas the stoichiometry of other protein complexes has altered, suggests an involvement of the PetM subunit in regulatory processes mediated by the cytochrome b6f complex.[1]

References

  1. A regulatory role of the PetM subunit in a cyanobacterial cytochrome b6f complex. Schneider, D., Berry, S., Rich, P., Seidler, A., Rögner, M. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities