The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of NAD(P)H oxidase in the tamoxifen-induced generation of reactive oxygen species and apoptosis in HepG2 human hepatoblastoma cells.

Previously, tamoxifen (TAM) has been shown to induce apoptosis through elevation of intracellular Ca2+ in HepG2 human hepatoblastoma cells. In this study we investigated the role of reactive oxygen species (ROS) in the TAM-induced apoptosis, and interrelationship between intracellular Ca2+ and ROS. TAM induced a slow and sustained increase in intracellular ROS level. An antioxidant, N-acetylcysteine significantly inhibited both ROS production and apoptosis induced by TAM, suggesting that ROS may play an essential role in the TAM-induced apoptosis. In a time frame ROS generation followed intracellular Ca2+ increase, and the extracellular and intracellular Ca2+ chelation with EGTA and BAPTA/AM, respectively, completely inhibited the TAM-induced ROS production, indicating that intracellular Ca2+ may mediate the ROS generation. Inhibitors of NAD(P)H oxidase, diphenylene iodonium, phenylarsine oxide and neopterine, significantly blocked the TAM-induced ROS generation and apoptosis, implying that this oxidase may act as a source enzyme for the production of ROS. These results suggest that non-phagocytic NAD(P)H oxidase may play a novel role as a mediator of the apoptosis associated with intracellular Ca2+ in HepG2 cells.[1]

References

 
WikiGenes - Universities