The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Substrate specificity of Ca(2+)/calmodulin-dependent protein kinase phosphatase: kinetic studies using synthetic phosphopeptides as model substrates.

Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases. In order to elucidate the mechanism of substrate recognition by CaMKPase, we chemically synthesized a variety of phosphopeptide analogs and carried out kinetic analysis using them as CaMKPase substrates. This is the first report using systematically synthesized phosphopeptides as substrates for kinetic studies on substrate specificities of protein Ser/Thr phosphatases. CaMKPase was shown to be a protein Ser/Thr phosphatase having a strong preference for a phospho-Thr residue. A Pro residue adjacent to the dephosphorylation site on the C-terminal side and acidic clusters around the dephosphorylation site had detrimental effects on dephosphorylation by CaMKPase. Deletion analysis of a model substrate peptide revealed that the minimal length of the substrate peptide was only 2 to 3 amino acid residues including the dephosphorylation site. The residues on the C-terminal side of the dephosphorylation site were not essential for dephosphorylation, whereas the residue adjacent to the dephosphorylation site on the N-terminal side was essential. Ala-scanning analysis suggested that CaMKPase did not recognize a specific motif around the dephosphorylation site. Myosin light chain phosphorylated by protein kinase C and Erk2 phosphorylated by MEK1 were poor substrates for CaMKPase, while a synthetic phosphopeptide corresponding to the sequence around the phosphorylation site of the former was not dephosphorylated by CaMKPase but that of the latter was fairly good substrate. These data suggest that substrate specificity of CaMKPase is determined by higher-order structure of the substrate protein rather than by the primary structure around its dephosphorylation site. Use of phosphopeptide substrates also revealed that poly-L-lysine, an activator for CaMKPase, activated the enzyme mainly through increase in the V(max) values.[1]

References

  1. Substrate specificity of Ca(2+)/calmodulin-dependent protein kinase phosphatase: kinetic studies using synthetic phosphopeptides as model substrates. Ishida, A., Shigeri, Y., Tatsu, Y., Endo, Y., Kameshita, I., Okuno, S., Kitani, T., Takeuchi, M., Yumoto, N., Fujisawa, H. J. Biochem. (2001) [Pubmed]
 
WikiGenes - Universities