The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Manganese Superoxide Dismutase Affects Cytochrome c Release and Caspase-9 Activation After Transient Focal Cerebral Ischemia in Mice.

Release of cytochrome c from mitochondria to cytosol is a critical step in the mitochondrial-dependent signaling pathways of apoptosis. The authors have reported that manganese superoxide dismutase (Mn-SOD) attenuated cytochrome c release and apoptotic cell death after focal cerebral ischemia (FCI). To investigate downstream to the cytochrome c-dependent pathway, the authors examined caspase-9 activation after transient FCI by immunohistochemistry and Western blotting in both wild-type and Sod2 -/+ mice. Mice were subjected to 60 minutes of middle cerebral artery occlusion followed by 1, 2, 4, or 24 hours of reperfusion. Two hours after reperfusion, cytochrome c and caspase-9 were observed in the cytosol and significantly increased in Sod2 -/+ mutants compared with wild-type mice as shown by Western blotting. Immunofluorescent double labeling for cytochrome c and caspase-9 showed cytosolic cytochrome c 1 hour after transient FCI. Cleaved caspase-9 first appeared in the cytosol at 2 hours and colocalized with cytochrome c. Terminal deoxynucleotidyl transferase- mediated uridine 5;-triphosphate-biotin nick and labeling (TUNEL) showed significant increase of positive cells in Sod2 -/+ mice compared with the wild-type in the cortex, but not in the caudate putamen. The current study revealed Mn-SOD might affect cytochrome c translocation and downstream caspase activation in the mitochondrial-dependent cell death pathway after transient FCI.[1]

References

  1. Manganese Superoxide Dismutase Affects Cytochrome c Release and Caspase-9 Activation After Transient Focal Cerebral Ischemia in Mice. Noshita, N., Sugawara, T., Fujimura, M., Morita-Fujimura, Y., Chan, P.H. J. Cereb. Blood Flow Metab. (2001) [Pubmed]
 
WikiGenes - Universities