The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Binding of ferric heme by the recombinant globin from the cyanobacterium Synechocystis sp. PCC 6803.

The product of the cyanobacterium Synechocystis sp. PCC 6803 gene slr2097 is a 123 amino acid polypeptide chain belonging to the truncated hemoglobin family. Recombinant, ferric heme-reconstituted Synechocystis sp. PCC 6803 hemoglobin is a low-spin complex whose endogenous hexacoordination gives rise to optical and NMR characteristics reminiscent of cytochrome b(5) [Scott, N. L., and Lecomte, J. T. J. (2000) Protein Sci. 9, 587-597]. In this work, the sequential assignments using (15)N-(13)C-labeled protein, (1)H nuclear Overhauser effects, and longitudinal relaxation data identified His70 as the proximal histidine and His46 as the sixth ligand to the iron ion. It was also found that one of two possible heme orientations within the protein matrix is highly preferred (>90%) and that this orientation is the same as in vertebrate myoglobins. The rate constant for the 180 degrees rotation of the heme within a protein cage to produce the favored isomer was 0.5 h(-1) at 25 degrees C, approximately 35 times faster than in sperm whale myoglobin. Variable temperature studies revealed an activation energy of 132 +/- 4 kJ mol(-1), similar to the value in metaquomyoglobin at the same pH. The rate constant for heme loss from the major isomer was estimated to be 0.01 h(-1) by optical spectroscopy, close to the value for myoglobin and decades slower than in the related Nostoc commune cyanoglobin. The slow heme loss was attributed in part to the additional coordination bond to His46, whereas the relatively fast rate of heme reorientation suggested that this bond was weaker than the proximal His70-Fe bond. The standard reduction potential of the hexacoordinated protein was measured with and without poly-L-lysine as a mediator and found to be approximately -150 mV vs SHE, indicating a stabilization of the ferric state compared to most hemoglobins and b(5) cytochromes.[1]

References

  1. Binding of ferric heme by the recombinant globin from the cyanobacterium Synechocystis sp. PCC 6803. Lecomte, J.T., Scott, N.L., Vu, B.C., Falzone, C.J. Biochemistry (2001) [Pubmed]
 
WikiGenes - Universities