The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibiting the complement system does not reduce injury in renal ischemia reperfusion.

The complex pathogenesis of ischemia reperfusion injury (IRI) includes endothelial expression of adhesion molecules, leukocyte recruitment and activation, reactive oxygen species production, and apoptotic and necrotic cell death. A role for complement in IRI of different organs, including kidney, has been proposed on the basis of results of experiments that used pharmacologic inhibitors as well as animals that were deficient in individual complement proteins. Here, renal IRI in mice was examined. Animals that were deficient in C3 had partial protection from IRI induced by 27.5 min of bilateral renal ischemia, followed by 20 h of reperfusion (blood urea nitrogen [BUN] values, 46.6 +/- 6.9 and 68.4 +/- 7.9 mg/dl in C3 -/- and C3 +/+ mice; n = 7 and 8, respectively; P = 0.033). Given the reduction in IRI in C3 -/- mice, it was investigated, by use of the rodent C3 convertase inhibitor CR1-related gene/protein y-Ig (Crry-Ig), whether exogenous administration of a complement inhibitor could lessen renal injury. Despite the use of Crry-Ig in high doses, there was no significant reduction of injury induced by 20 to 30 min of ischemia followed by up to 30 h of reperfusion. Histologic examination revealed acute tubular necrosis and neutrophilic infiltration, both of which correlated significantly with BUN values (P < 0.001). Of interest, C3 deposition around renal tubules was significantly less in animals with IRI, compared with that in unmanipulated controls (P < 0.001). In Crry-Ig-treated animals, C3 deposition was inversely proportional to BUN values (r = -0.63; P < 0.001), which presumably indicates that severe vascular IRI allowed access of the 160 kD Crry-Ig to the interstitium. Thus, renal IRI in mice may have a partial complement dependence, yet pharmacologic inhibition of the complement system does not seem to be effective, likely because of the presence of other mediator systems that operate in parallel.[1]

References

  1. Inhibiting the complement system does not reduce injury in renal ischemia reperfusion. Park, P., Haas, M., Cunningham, P.N., Alexander, J.J., Bao, L., Guthridge, J.M., Kraus, D.M., Holers, V.M., Quigg, R.J. J. Am. Soc. Nephrol. (2001) [Pubmed]
 
WikiGenes - Universities