The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to G(s)-, to G(i)-, and to G(q)-coupled effector signaling.

The prostacyclin receptor ( IP) is primarily coupled to G alpha(s)-dependent activation of adenylyl cyclase; however, a number of studies indicate that the IP may couple to other secondary effector systems perhaps in a species-specific manner. In the current study, we investigated the specificity of G protein:effector coupling by the mouse (m) IP overexpressed in human embryonic kidney 293 cells and endogenously expressed in murine erythroleukemia cells. The mIP exhibited efficient G alpha(s) coupling and concentration-dependent increases in cAMP generation in response to the IP agonist cicaprost; however, mIP also coupled to G alpha(i) decreasing the levels of cAMP in forskolin-treated cells. mIP coupling to G alpha(i) was pertussis toxin-sensitive and was dependent on protein kinase (PK) A activation status. In addition, the mIP coupled to phospholipase C (PLC) activation in a pertussis toxin-insensitive, G alpha(i)-, G beta gamma-, and PKC-independent but in a G alpha(q)- and PKA-dependent manner. Whole cell phosphorylation assays demonstrated that the mIP undergoes cicaprost-induced PKA phosphorylation. mIP(S357A), a site-directed mutant of mIP, efficiently coupled to G alpha(s) but failed to couple to G alpha(i) or to efficiently couple to G alpha(q):PLC. Moreover, mIP(S357A) did not undergo cicaprost-induced phosphorylation confirming that Ser(357) is the target residue for PKA-dependent phosphorylation. Finally, co-precipitation experiments permitted the detection of G alpha(s), G alpha(i), and G alpha(q) in the immunoprecipitates of mIP, whereas only G alpha(s) was co-precipitated with mIP(S357A) indicating that Ser(357) of mIP is essential for G alpha(i) and G alpha(q) interaction. Moreover, inhibition of PKA blocked co-precipitation of mIP with G alpha(i) or G alpha(q). Taken together our data indicate that the mIP, in addition to coupling to G alpha(s), couples to G alpha(i) and G alpha(q); however, G alpha(i) and G alpha(q) coupling is dependent on initial cicaprost-induced mIP:G alpha(s) coupling and phosphorylation of mIP by cAMP-dependent PKA where Ser(357) was identified as the target residue for PKA phosphorylation.[1]

References

 
WikiGenes - Universities