The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pharmacokinetics and metabolism of a cysteinyl leukotriene-1 receptor antagonist from the heterocyclic chromanol series in rats: in vitro-in vivo correlation, gender-related differences, isoform identification, and comparison with metabolism in human hepatic tissue.

CP-199,331 is a potent antagonist of the cysteinyl leukotriene-1 (LT(1)) receptor, targeted for the treatment of asthma. The pharmacokinetic/metabolism properties of CP-199,331 were studied in rats and compared with those in human liver microsomes/hepatocytes. In vitro biotransformation of CP-199,331 in rat and human hepatocytes was similar, consisting primarily of CP-199,331 O-demethylation. Marked sex-related differences in plasma clearance (CL(p)) of CP-199,331 were observed in rats: 51 and 1.2 ml/min/kg in males and females, respectively. This difference in CL(p) was attributed to gender differences in metabolizing capacity because V(max) and K(m) values for CP-199,331 metabolism were 30-fold higher and 8-fold lower, respectively, in male rat liver microsomes compared with female microsomes. Scale-up of the in vitro microsomal data predicted hepatic clearance (CL(h)) of 64 and 2.5 ml/min/kg in male and female rats, respectively. These values were in close agreement with the in vivo CL(p), suggesting that CP-199,331 CL(p) in male and female rats was entirely due to hepatic metabolism. Studies with rat recombinant cytochromes P450 and anti-rat cytochrome P450 ( CYP) antibodies revealed the involvement of male rat-specific CYP2C11 in the metabolism of CP-199,331. In contrast, CP-199,331 metabolism in human liver microsomes was principally mediated by CYP3A4. The projected human clearance in liver microsomes and hepatocytes varied 6-fold from low to moderate, depending on CYP3A4 activity. Considering that O-demethylation is the major route of elimination in humans, the in vivo clearance of CP-199,331 may exhibit moderate variability, depending on CYP3A4 abundance in the human population.[1]

References

 
WikiGenes - Universities