The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Dual regulation of EDG1/S1P(1) receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2.

Here we demonstrate that phosphorylation of the sphingosine 1-phosphate (SSP) receptor "endothelial differentiation gene 1" (EDG1 or S1P(1)) receptor is increased in response to either SSP or phorbol 12-myristate 13-acetate (PMA) exposure but not lysophosphatidic acid. Phosphoamino acid analysis demonstrated that SSP stimulated the accumulation of phosphoserine and phosphothreonine but not phosphotyrosine. An inhibitor of PMA-stimulated EDG1 phosphorylation failed to block SSP-stimulated phosphorylation. Additionally, removal of 12 amino acids from the carboxyl terminus of EDG1 specifically reduced SSP- but not PMA-stimulated phosphorylation, suggesting that SSP and PMA increase EDG1 phosphorylation via distinct mechanisms. In vitro assays revealed that G-protein-coupled receptor kinase 2 may be at least partially responsible for SSP- stimulated EDG1 phosphorylation observed in intact cells. In addition, phosphorylation by PMA and SSP were associated with a loss of EDG1 from the cell surface by distinct mechanisms. Removal of 12 residues from the carboxyl terminus of EDG1 completely inhibited SSP-mediated internalization, suggesting that this domain dictates susceptibility to receptor internalization while retaining sensitivity to SSP-stimulated phosphorylation. Thus, we conclude that (a) EDG1 phosphorylation and internalization are controlled via independent mechanisms by agonist occupation of the receptor and protein kinase C activation, and (b) although determinants within the receptor's carboxyl-terminal tail conferring EDG1 sensitivity to agonist- mediated internalization and G-protein-coupled receptor kinase phosphorylation exhibit a degree of overlap, the two phenomena are separable.[1]

References

  1. Dual regulation of EDG1/S1P(1) receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. Watterson, K.R., Johnston, E., Chalmers, C., Pronin, A., Cook, S.J., Benovic, J.L., Palmer, T.M. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities